Name:
Section:
Answer all questions and show your work. Unsupported answers may receive no credit. You may not use a calculator on this quiz. Allow 15 minutes for the quiz.

1. (a) (2 points) Find an improper integral so that $\sum_{k=N}^{\infty} \frac{1}{k^{2}} \leq \int_{A}^{\infty} f(x) d x$.
(b) (3 points) Use your answer to part a) to find N so $\sum_{k=N}^{\infty} \frac{1}{k^{2}} \leq \frac{1}{300}$.

Solution: a) We have $1 / k^{2} \leq 1 / x^{2}$ if $k-1 \leq x \leq k$. Thus we have

$$
\sum_{k=N}^{\infty} \frac{1}{k^{2}} \leq \int_{N-1}^{\infty} \frac{1}{x^{2}}
$$

b) Evaluating the integral we have

$$
\int_{N-1}^{\infty} \frac{1}{x^{2}} d x=\lim _{R \rightarrow \infty} \int_{N-1}^{R} \frac{1}{x^{2}} d x=\lim _{R \rightarrow \infty}-\left.x^{-1}\right|_{x=N-1} ^{R}=\frac{1}{N-1} .
$$

We need $1 /(N-1) \leq 1 / 300$ or $N \geq 301$.
Grading: a) 1 point for integrand $f(x)=1 / x^{2}, 1$ point for limit $A=N-1$. b) 1 point for anti-derivative, 1 point for value of integral, 1 point for value for N. Give credit for part b) if a wrong answer from part a) is used correctly in part b).
Compare WeBWorK B3 \#10.
2. (a) (2 points) For which p does the p-series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converge?
(b) (3 points) Use the limit comparison test to determine if the series $\sum_{n=1}^{\infty} \frac{2 n^{2}+3 n+1}{n^{5}+5 n^{3}+2}$ is convergent. Your answer should give the series you use for comparison.

Solution: a) The p-series converges for $p>1$.
b) If we let $a_{n}=\frac{2 n^{2}+3 n+1}{n^{5}+5 n^{3}+2}$ we can compare with $b_{n}=1 / n^{3}$.

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{n^{3} \cdot\left(2 n^{2}+3 n+1\right)}{n^{5}+5 n^{3}+2}=2 .
$$

Since the limit is non-zero and finite and the series b_{n} converges, the series $\sum_{n=1}^{\infty} a_{n}$ will converge also.
Grading: a) 2 points for correct answer, b) 1 point for choosing $b_{n}=1 / n^{3}, 1$ point for taking limit, 1 point for answer.
Compare WeBWorK B4 \#8.

