Solutions to Selected Quiz Questions

Quiz 2, Question 1. Use the substitution $x=6 \tan (\theta)$ to evaluate the indefinite integral

$$
\int \frac{79 d x}{x^{2} \sqrt{x^{2}+36}}
$$

Solution: We take $x=6 \tan (\theta)$ with $-\pi / 2<\theta<\pi / 2$. Then $\sqrt{x^{2}+36}=6 \sec (\theta)$ and $d x=6 \sec ^{2}(\theta) d \theta$. Thus

$$
\begin{aligned}
\int \frac{79 d x}{x^{2} \sqrt{x^{2}+36}} & =\int \frac{79\left[6 \sec ^{2}(\theta) d \theta\right]}{\left[36 \tan ^{2}(\theta)\right][6 \sec (\theta)]} \\
& =\frac{79}{36} \int \frac{\sec (\theta) d \theta}{\tan ^{2}(\theta)} \\
& =\frac{79}{36} \int \frac{\cos (\theta) d \theta}{\sin ^{2}(\theta)}
\end{aligned}
$$

Using the substitution $u=\sin (\theta)$, this reduces to

$$
\begin{aligned}
\frac{79}{36} \int \frac{d u}{u} & =-\frac{79}{36} \cdot \frac{1}{u}+C \\
& =-\frac{79}{36} \cdot \frac{1}{\sin (\theta)}+C \\
& =-\frac{79 \csc (\theta)}{36}+C
\end{aligned}
$$

It now remains to express $\csc (\theta)$ in terms of $x=6 \tan (\theta)$. Consider a right triangle with legs x and 6 , so that $x / 6=\tan (\theta)$, as shown below:

Here θ is the angle facing x. Then the hypotenuse is $\sqrt{x^{2}+36}$ and

$$
\csc (\theta)=\frac{\sqrt{x^{2}+36}}{x}
$$

Finally,

$$
\int \frac{79 d x}{x^{2} \sqrt{x^{2}+36}}=-\frac{79 \sqrt{x^{2}+36}}{36 x}+C .
$$

