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Abstract

In this paper we construct a refinement of the transchromatic gen-
eralized character maps by taking into account the torus action on
the inertia groupoid (also known as the Fix functor). The relation-
ship between this construction and the geometry of p-divisible groups
is made precise.

1 Introduction

In chromatic homotopy theory, there is a history of trying to understand
height n phenomena in terms of height n — 1 phenomena associated to the
free loop space. There is an S'-action on the free loop space by rotation.
This action plays a key role in topological cyclic homology and the redshift
conjecture (such as in [3]) and in Witten’s work on the elliptic genus (see [11]
and [10]). In generalized character theory the S'-action has been traditionally
ignored. In this work, we describe a generalized character theory in which
this S'-action is accounted for and we explain the relationship between it
and the geometry of p-divisible groups.

When a space X has an action by a group G, there are competing notions
of the free loop space of X. In [11], Witten introduced the notion of a “twisted
loop space” in which the loops and group action on the space X have some
interplay. Given g € G such that ¢g" = e, a loop twisted by ¢ is a map

sy R/WZ — X,

such that
Sg(t +1) = gsg(t)
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for t € R/hZ.
This construction can be easily formalized using topological groupoids.
The space of all twisted loops is modeled by the topological groupoid of maps

homtop. groupoids (R//Zv X//G)7

where the notation X//G means the action topological groupoid. On restric-
tion to the constant loops inside of this topological groupoid one recovers the
inertia groupoid of the G-space X:

hOrntop. groupoids(*//Za X//G)

This is the action topological groupoid for the G-space

Fix(X) = [[X*

geG

of Hopkins, Kuhn, and Ravenel. The target of the character maps of [5]
and [8] are the cohomology of the geometric realization of this topological
groupoid (or the Borel construction):

EG x¢ Fix(X).

In this case, the constant loops carry an action by S! that is non-trivial
because of the interplay between the loops and the G-action. The purpose
of this paper is to construct a character theory for Morava E-theory that
keeps track of this S'-action on the constant loops. We call the geometric
realization of the resulting topological groupoid

Twist(X).

To be a bit more precise about what these spaces are, first note the equiva-
lence
EG x¢ Fix(X) ~ [] EC(g) xc(g) X*
lgleG

where the coproduct is taken over conjugacy classes of elements in G and
C'(g) is the centralizer of g. However, a conjugacy class of elements in G is
the same thing as a conjugacy class of maps Z — G. Fix a map

o7 — QG.



Then BZ = S* acts on EC(g) X¢(g) X9 by addition through «. Finally, we
can define
Twist(X) = [ ES" xs1 EC(g) xc(g) X7
lgleG

A generalized character theory built using these spaces is somewhat more
refined than the generalized character theory of [8]. In fact, the transchro-
matic generalized character maps of [8] factor through these new maps. The
cohomology of these spaces turns out to be closely tied to the geometry of
p-divisible groups. To go into more detail, we must discuss the relationship
between generalized character theory and p-divisible groups.

The generalized character theory of Hopkins, Kuhn, and Ravenel [5] has
proved to be a powerful tool in the analysis of the Morava E-theory of finite
groups and finite G-spaces. A key idea of theirs is to construct a rational al-
gebra C over which the p-divisible group associated to Morava F,, trivializes
to a constant scheme. Because Cj is a rational algebra the generalized char-
acter map of Hopkins, Kuhn, and Ravenel can be viewed as transchromatic
in nature: its source is in chromatic layer n and its target is in chromatic
layer 0. In [8] the author generalized their construction to all of the heights
between 0 and n by constructing an LK(t)Eg—algebra C; with the property
that there is a pullback square of p-divisible groups

Go © Q,/Z G G,

| | |

Spec(Cy) Spec(Lg ) EY) — Spec EY.

Over the ring Cy, Gg, splits into the sum of a formal group of height ¢ and a
constant étale group of height n—t. It is vital to the topological constructions
that the étale part of C;®@pgo Gg, is constant. The main theorem of this paper
is that a generalized character map can be defined using a ring B; over which
the p-divisible group is a non-trivial extension of a height ¢ formal group by
a height n — t constant étale p-divisible group. More precisely, there is a
pullback square

| |

Spf(B;) Spec(ED).




We construct a complete version of (Y, called C,. There is a canonical map
B, — C,. Pulling back over this map recovers the split p-divisible group
from the first diagram above. Recall that the transchromatic generalized
character map of [8] that starts in chromatic height n and lands in chromatic
height t is a map of Borel equivariant cohomology theories

Og : B (EG x¢ X) — Cy ®p, 50 L Ey(EG x ¢ Fixy_y(X)).

One of the key constructions in this paper is a generalization of the con-
struction of the functor EG x¢g Fix,(—) from [8]. Recall that, for a finite
G-CW complex X,

Fig,(X)= [ x™
achom(Zk,G)
This is a finite G-CW complex and the cohomology of FG x g Fix;(X) is the
codomain of the generalized character map. There is an equivalence

EG x¢ Fix,(X) ~ [T EC(ma)xcima X™,

[e]€hom(ZL,G) /~

where C'(im ) is the centralizer of the image of o and the disjoint union
is taken over conjugacy classes of maps. An analagous space is required to
construct the twisted character maps. Let ZZ — G be a continuous map of
groups in which G is finite and discrete. A map of this form is determined
by an h-tuple of pairwise commuting prime-power elements in G. It turns
out that the pushout of abelian groups

h h
ZP @p
ima——ima Bz Qz
can be extended on the left to C'(im o). We define
T(a) = C(ima) Sz QL.
There is a short exact sequence

0 — C(ima) — T(a) — Q,/Zk — 0.



The action on the fixed point space X™® by C(im«) can be extended to
T(«) and we define

Twist,(X) = [T ET() xr@X™

[a]€hom(ZL,G)/~

Analogues of this construction have shown up in work of Ganter in [4] and
in unpublished work of Rezk. As discussed in the first paragraphs, it is a
Borel equivariant version of a construction in equivariant loop space theory
in which the free loop space LX is studied by understanding the S!-action
by rotation on the constant loops. There is a canonical map

Twist, (X) —» Twisty(x) & (BQ,/Z,)"

induced by the maps T(a) — (Q,/Z,)" and X — . We use this to
construct a map of Borel equivariant cohomology theories called the twisted
character map

TG’ . E;;(EG XG X) _) B: ®LK(t)EZ(BQp/Z$7t) LK(t)EZ(TW]Stn_t(X))

When X = % and G = Z/p* we show that this map recovers the global
sections of the map on p¥-torsion

Go ©gn—+ Q' [P*] — G, [P").

Because there is an isomorphism

o

Go ®zn— Q' p*] — B ®@py G, [p"],

one might hope that this holds for more general spaces and groups. This is
the main result.

Theorem. For all finite groups G, the twisted character map induces an
isomorphism of Borel equivariant cohomology theories

Biom e Biom Ey(EGxaX) = Bi®y,, pe(ng,/z-+ Lice Ba(Twist,_(X)).

We also show how to canonically recover the transchromatic generalized
character maps of [8] using the canonical map B; — C,. Tt should be
noted that, in personal correspondence, Lurie has described a method for
building the transchromatic twisted character maps from the transchromatic
generalized character maps of [8].
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2 Notation and Conventions
For a scheme X over Spec R and a map R — S we will set
S ® X = SpecS Xgpecr X.

At times we will be working with formal schemes and we will mean the
pullback in the appropriate category of formal schemes.
Given a ring R complete with respect to an ideal I, let

Spf; R = co}cim( Spec(R/I) —» Spec(R/I*) — ...).

By Q,/Z}, Z}, and Q! we will always mean (Q,/Z,)", (Z,)", and (Q,)".
We permanantly fix basis elements by, ..., b, of ZZ where

b; = (0,...,0,1,0,...0)

where the 1 is in the ith place.
We will often need to refer to an indexed collection of elements such as
{q1,-..,qn}. We will often refer to this collection using a bar:

q: {Q17---th}-
So for example
ZP[[Q_]] = Zp[[Qb s 7Qh]]-

Given maps of abelian groups A — B and A — C we let B @4 C be the
pushout of B and C along A.



3 Transchromatic Geometry

3.1 Non-Trivial Extensions

We begin by constructing a universal Ly ;) Eb-algebra B, with the property
that there is a pullback square

Gg

n

|

Spt}, 4 (q)(Bi) — Spec(Ey).

Fix a prime p and let 0 < t < n. Let E, be a Morava E-theory and
Lk E, be the localization of E, with respect to Morava K-theory of height
t. We have the following description of the coefficients of £, and L) Ey:

12

B =W (k)[ui, ..., un 1]
L; = LgwE, W(k)ﬂul,...,un_l]][ugl]@, ,,,,, o)
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Let I; = (p,u1,...,u;—1). Note that both of the rings above are complete
with respect to I;. Let Gg, be the formal group associated to F, viewed as
a p-divisible group. Once and for all we fix a coordinate x for Gg,. In [§]
it is shown that G = L; ®go Gp, is the middle term of a connected-étale
sequence of p-divisible groups

0—Gy—G— G,y —0,

where Gq is the formal group associated to Lg)E, from the complex ori-
entation induced by the canonical localization map E, — Lk E,. Note
that £, and Lk E, are p-complete for n > 0 and ¢ > 0 so that we have the
following isomorphisms

E,(BQ,/Z;) = E,(B(S")")
LB, (BQy/Zy) = L B (B(SY)").

On the other hand, forn = 0 ort = 0, E;(BQ,/Z!) = E} and (L) En)*(BQ,/Z)) =



We begin by constructing an L;-algebra B; with the property that over
B, there is a canonical diagram of the form

Z;z—t QZ—t

L

Gy —G.

Define

{n ...,qn_t},
{ < TL t}7
([ ]Al _qla"'a[pk]An—t_Qn—t)~

\_/ :B\ Q|
|

([p"] A~
Consider the ring

B; (cohm L[q] ®popq) E, w7, H/([Pk]le - Q))?ﬁ-(‘j)'

The colimit is completed with respect to the ideal I; + ().

This construction was inspired by the work of Ando and Morava in [1]
Section 5. The idea behind the construction is that the ring B, has n — t
canonical points for the formal group Go = Gy, p, given by the set g.
The elements of A are invisible to G in the sense that there are no maps
L;[z] — B; such that z — A; for any i. We formalize all of this in the next
proposition using the language of formal algebraic geometry.

Proposition 3.2. The ring B; is the universal complete L;-algebra equipped
with the following diagram of sheaves of Z,-modules in the fppf topology on
complete L;-algebras:

n—t n—t
Zp QP

J |

B, ® Gy— B, ®G.

Proof. We will prove this in four steps. First we will construct the map
Zyt — B; ® Gy. Then we will show that it does not extend to a map

from Qg_t — B; ® Gg. Then we will show that it does extend to a map
Q' — B, ® G. We will use Tate’s Lemma 0 from [9]. Let R be a ring



complete with respect to an ideal I that contains p and let [p¥](z) be the p*-
series for some formal group law. Tate’s Lemma 0 states that the topologies
on R[] generated by the powers of I+ (x) and the ideals I* + ([p¥](z)) agree.

1. We construct the map Z3~" — B, ® Gy as a map
Zi' — Go(By).
We have the isomorphism
Go(B;) = lim colim homeon; 1, (Le[]/ [P’} (x), B,/(I; + @)").

J

As Gy is formal and by Tate’s Lemma 0 this is

!

hom(Sprt+(q)(B;), Spflt+(x)(Lt [2])) = homeont £, (Le[2], By),

which is the largest ideal of definition for B, with the topology induced by
I; + (g). Call this ideal J. The elements of ¢ are elements of J and can be
used to define the required map.

2. We observe that the map defined in part 1 does not extend to QZ‘Z
This is not immediately clear because we don’t know that the elements of A
are not in J. Assume a continuous map

L[] =5 B,
exists. Consider the composite
Lit] — B, — B,/ (q).
It factors through

Li[o] 25 Ly @y EQLA]/[P)(Ay)

for some k. Now, since the map is assumed to be continuous, the power series
[p¥](z) must be in the kernel of the map. Thus we get a map

L[] /[") () 4 Ly @po EO[AD/[0F)(A).
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But this map is an inverse to the canonical quotient in the other direction
and cannot exist for dimension reasons (the ring on the right has higher rank
as a free Li-module).

3. The composite Z"" — B, ® G does extend to Q~*. Tate’s Lemma
0 gives us that

lim B/ (L + q)* = 1im B,/(If + ["](a))
and so

G(B,) = lim colim homeou 1, (Lt @ Ep«]/P)(x), B,/ (I + @)")

o lilgn colim hom.ops Lt(Lt g Eg[[l']]/[p]](aj), B;//([tk + [pk](q_)))

J

does detect the elements of A. As k varies we get

QZH = lim ( cee T (Qp/p2zp>nit — (Qp/pzpyht — (Qp/Zp)nit)'

’

4. By universality in the statement of the claim we mean that Spf; . (B;)
represents the functor that brings a complete L;-algebra R to the set of
commutative squares of the form

er]lit @Irjt

From the above we see that a continuous L;-algebra map B, — R induces a
square of this sort. Also, each square of this sort comes from such a map. Let
R be a connected complete L;-algebra. Given such a square, the R points of
the square induce a map

(Zp)n_t — GO(R>7

which is precisely a map L;[g] — R. Now the other side of the square
implies that this map extends to a map

B, — R.

10



The ring B; can be realized topologically. We give the caset = n—1. View

EY(BQ,/Z,) as an EX(BQ,/Z,)-algebra through the map Q,/Z, vy Q,/Z,.
Using the coordinate this map is described by

E2la] " B}l
Set ¢ = [p*](x). Then the codomain can be described as
Epla] = Eplla, A/ ([p"Ar — q)
and the map is the inclusion
Epla] — Enllg, A/ (' AL — q).

The Weierstrass preparation theorem implies that the codomain is a free
module of rank p*" over the domain. To topologically define the maps that
the colimit is taken over consider the square

@pjzpﬂ(@pfp
Q,/2Z, - Q,/Z,

This induces

LK(t)E (BQy/Zp) ® EO(BQ /Zp) Eg(BQp/Zp)
1® k41
— LK(t)Eg(BQp/Zp) ®[Ji;g(BQp/zp) ES(BQP/ZP).

Now we see that, up to a matter of completion, we have the following
isomorphism

B, & colim Ly ES(B(Qu/Z5 ™)) &y oy BV B/ Z ),
where the right side of the tensor product is induced by the map

Q,/Zy 25 Q,/Z

As L) Ey, is arational cohomology theory, this implies that B = C’O, where
Cy is the ring defined just before Proposition 2.13 of [§].

11



Over B; there is a canonical map of p-divisible groups
Go D(z,)n— (Qp)n_t — G.

We can give a description of the global sections of this map on p*-torsion. We
begin with an informal description of the global sections and then describe
the map. Let R be a complete B;-algebra. Let ¢; € R be the image of
q; € B;. Then

Go Sz,)n-t (Qp)""(R) = Go(R) B(z,yn—+ (Qp)"~

has elements of the form

il Z.nft
(7’, ZF’ BRI pkn—t)’

where r is an element of Go(R) and the quotients are elements of Q,, greater
than or equal to 0 and less than 1. Addition of two such tuples is computed by
formal addition in the first variable and adding in @, in the other variables.

However, if in the sum 1% > 1 for some 1 < j < n —t then we subtract

1 from it and formally subtract g; from the first term. A more thorough
discussion of the arithmetic can be found in [1] Subsection 5.1.
Thus, for example, an element of the form

1
r,—,0,...,0
(r, 2 )

is p-torsion if and only if [p|(r) = ¢1, for then
1
p-(r,}—?,O, ...,0) = ([p|(r),1,0,...,0) = ([p)(r)—c,q1,0,0,...,0) = (0,0,0,...,0).

For i = (i1,...,ip—¢) € Ay, let

(@) = [)(qr) +a, - -+ [inil(gns)-

From the above discussion we deduce that

Oow,,-c05 i+ = L BiLl /() (x) = [i)(@)).

1E€EAL

Recall from Lemma 2.16 in [8] that the ideals ([p*](x;)—[i](7)) and ([p*](zi)—c,
[i](q)) are equal.

12



Now we can describe the global sections of the map
Go Byt Q' [P"] — G, [p"].

This is a map

Epl2]/ ")) — ][ Bilwd/(0"](x:) —, [i1(2)).

1EA
We only need to explain where x maps to for each i € Ay. The map above is
given by )
T = (T =g, [1](A))iea,

where

[1(A) =[] As +ep, - Fop, [In-d](Ani)

for A; € B, with the property that [p*]A; = ¢.
Recall that A; € B, is an element of G(B;) but not an element of Go(B;).
Now we can check that the map is well defined:

([p)2i =6, PM][(A))ien,
= ([p")2i —cg, lP"](A))ien,
= ([{1(@) —cp, [1(2))ica,

0.

We leave it as an exercise to the reader to verify that this is a map of
Hopf algebras.
As in [8] the induced map Q,/Z;~" — G over B, defines a subset

R C B such that over B, = (R_IB;)Q +(g) there is a canonical isomorphism

Go S @;L_t — G.
Proposition 3.3. The complete L;-algebra B; represents the functor
ISOGO/(GO @Zg—t @Z_t7 G) : Complete L; — Alg — Set

that sends
R~ ISOGO/(R XL, Go @Z;L*t @;_t7 R® G)

13



Proof. A map
B, — R

induces via precomposition a map
!
B, — R,
which represents a square

n—t n—t
Lyt —=Qp

Lo

over R. This induces a map
Qp/Zz_t — Geta

which is an isomorphism by the definition of B;. Now the five lemma implies
that the map from the pushout of the square to G is an isomorphism. n

3.4 Relation to

Let C; be the Li-algebra defined in Section 2.9 of [8]. Recall that Cy; = S~1CY.
Let C; = (C})7, be the completion of Cj at the ideal I;. Now we define C; to
be
(571G, = (STC

It should not be surprising that this is the correct analogue of C} in the
setting of this paper. The recompletion process just forces the ring to be a
complete L;-algebra. R

There is a canonical topologically-induced map from B; to C;. Let A, =
(Z/p*)"~t. Consider the commutative square

e—=Q,/Zy".
The map

n— k n—
Licy En(B(Qp/Zy ™)) @30 5, 1y En(B(Qo/Z,™")) — Li@pg By (B(Ay))
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is induced in the left and bottom factors by the bottom map of the square

and in the right factor by the top map of the square. This map fits together
, Al

with the colimit on both sides to provide a map B, — C} .

Proposition 3.5. The map above sends the set R C B, bijectively to the
~l
set S C Cy.

Proof. Recall from [8] that there is a canonical map
QZS : Qp/Zg_t — (Get

over C’t/. Also the fixed coordinate provides an isomorphism (in the notation
of [3])

Ot = Ce 4]/ ().
In Section 2.9 of [8] we defined

gby . Ak — C’t/

by ¢,(i) = m¢*(y), the image of y in the component of O,, corresponding
to 7 € Ar. We then defined

S = co}cim Sy = co}cim {py()|i € Ay}

Let R, C Bj be defined analagously. Because ¢, is injective the finite sets
Sk and Ry have the same cardinality. Pulling the canonical map

QP/ZZ*"/ — B @ Gy
back along the map B, — é’t/ gives the commutative square

@p/ZZ_t - Qp/Zg_t
CA't/ ® Gep — B} ® Gyy.

The commutativity of the global sections of the pF-torsion of the square
implies that there is a surjection

Because the sets are finite and have the same cardinality this implies the
map is a bijection. O

15



This implies that B; is nonzero.
Proposition 3.6. The map L;/I; — B;/(I; + q) is faithfully flat.

Proof. Note that
B /(I; + q) = Cy/ 1.

Now this follow immediately from Proposition 2.18 in [8]. O

4 Transchromatic Twisted Character Maps

The transchromatic twisted character map is defined to be the composition
of two maps. The first map is induced by a map of topological spaces and
the second one is algebraic in nature.

4.1 The Topological Map

The transchromatic twisted character map is the composition of two maps
- a topological map and an algebraic map. In this section we describe the
topological map. It is induced by a map of topological spaces

BT(7k> XBQP/ZZ*t TWIStnft(X) — FG xg X

where X is a finite G CW-complex. In this map, the domain is a pullback and
the codomain is the Borel construction. Our first goal is to define the functor
Twist,,_¢(—) from finite G-spaces to spaces. It plays the role of the functor
EG x¢Fix,—+(—) of [5] and [8]. We will give two equivalent definitions of the
functor. The first is simpler to understand but requires some choices. The
second construction is free of any choices.

Given a continuous map of groups

o ZZ — G,
we can form the pushout in abelian groups

h h
Zp @p

P

ima —im o Szn QZ.

16



Proposition 4.2. The pushout extends on the left to the centralizer of the
image of «
C(ima) = {g € G|ghg™' = h Vh € ima}.

Proof. Let g,h € C(ima), s,t € QZ, and i,] € ZZ’. We will represent an
element of the pushout by [g,t] with the relation

(9.t +1] = [ga(i), 1].
We prove that multiplication is well-defined. We have
gt +il[h, s + j] = [ga(i), t][ha(), s]
= [ga(i)ha(f),t + 5]
and

lg,t +i][h, s+ j] = [gh,t + s+ i+ ]]
= [gha(i+j),t + s].

Now gha(i + j) = ga(i)ha(j) because « is a homomorphism and because
g, h are in the centralizer of the image of «. m

Definition 4.3. Let
T(a) = C(ima) Sz Q?.

Proposition 4.4. There is a short exact sequence
0 — C(ima) — T(a) — Q,/Zk — 0.
Proof. This is clear. O]

Example 4.5. Let v : Z! — Ay = (Z/p")" be the quotient. Then T'(v;)
is the pushout

Ay EBZI’; QZ

Note that this is isomorphic to Q, /Z;j and that this is the middle term of a
short exact sequence

Zy Q) Q/Zy

LN

Ay — Ay &z Qb —>Q, /7.

17



Example 4.6. Next we work a slightly more complicated example. Let
a: ZZ — Z/p".

We will try to understand the relationship between T'(a) and Q,/Z] through
the quotient map T(a) —— Q,/Z"

in terms of their duals. We call it “c” for
cokernal. First, the dual of Q,/ ZE is ZZ and the fact that the quotient map

is surjective implies that the dual map is injective. Now let iy,...,7;, be the
image of the basis elements of ZZ in Z/p*. Consider the inclusion

Z/pk i> @p/Zp

given by .
1 ]%,
where, for convenience, we consider 0 to map to 1 € Q,/Z,. Elements of
T(«) can be put in the form
aq ap,

<i7 (T17 R _))7

p phn

where i € Z/pF, 0 < % <1, and (0,(0,...,1,...,0)) = (4, (0,...,0)) when
the 1 is in the jth place. Consider the composition

T(o) ——=Q/Z,

Lm

Qp/Zp,
where 7; is the projection onto the jth factor. The composition 7; o ¢ gives
the image of the element b, = (0,...,0,1,0,...,0) € ZZ in T'(«)*, where the
1 is in the jth place. We construct a map

T(a) — Qp/Zy

by sending

18



A quick computation gives the relation

pk$ = '5.1(77-1 OC) + ... +ih(7ThOC).

Next note that the map
(mioc,...,myoc,x): T(a) — Q,/Z0

is a monomorphism so the dual is an epimorphism from a free Z,-module.
Thus x generates the part of T'(«)* not hit by ¢* and satisfies the relation
above. Finally we conclude that T'(«)* is the Z,-module with the following
presentation

{bh ey bh, I|pk$ = ilbl +...+ ihbh}.

Let G be a finite group and X a finite G-space (equivalent to a finite
G-CW complex).

Proposition 4.7. The action on the fixed point space X™< by C(im )
extends to an action by T'(«).

Proof. We will represent elements of T'(«v) as tuples of the form [g, ] where
g€ C(ima) and t € Q. We define

g, t]lx = gx.
We see that if j € Z;‘ C QZ then
z = [1, jlz = [a(j), 0]z = a(jlz ==
as © € X™ Thus the action is well-defined. O

Recall from [8] that the set of continuous homomorphisms hom(Z", G) is
a G-set under conjugation.
The following definition is fundamental to our work here:

Definition 4.8. For a G-space X, let

Twist),(X) = [T ET() xreX™,
[a]€hom(ZL,G) /~

where the coproduct is over conjugacy classes.
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This is analagous to the equivalence

EG x¢g Fixj(X) ~ H EC(im ) Xc(ima) Xime,

[o]€hom(Z],G) /~

Remark 4.9. There is an alternative way to view the relationship between
Twist,(X) and EG xg Fix,(X). There is a T = (S*)*" action on

H EC(ima) X C(im ) Xima.

[e]€hom(ZL,G) /~

The action is induced componentwise. We begin by treating the case when
X = . Thus fix an [o] € hom(Z! G)/ ~ and consider, by precomposition
with Z" — ZZ, the map

7" x C(ima) — Z! x C(im v) 2o C(im o),

where
+a 1 (5,9) = als) +g.

Now applying B(—) to the map gives an action of T on BC(im«) and the
Borel construction gives the p-complete equivalence

ET xp BC(im«) ~ BT («).
It is not hard to see that the above construction extends to give a T-action

on EC(Im ) Xc(ima) X ™ Thus, up to p-completion, Twist,(X) is the
homotopy orbits for a T-action on

H EC(lma) X C(im ) Xirna.

[a]€hom(ZL,G) /~
Example 4.10. Note that if X =% and G = e then
Twisty(x) = (BQ,/Z,)".

Now we provide a more canonical form for the functor Twist,(—). Let
a,ﬁ:ZZ — G and let

C(a,B) ={g € Glgag™' = 5}
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Proposition 4.11. The set C(«, ) is a right Zg-set through «.
Proof. For j € Z and g € C(a, 3) let

97 = ga(j).

This is well-defined because

ga(iaa(j) g™t = gag™t = B.

Now let T'(«r, 8) be the coequalizer of
O(O{,ﬂ) X ZZ X QZ—>O(Q7B) X QZ)

where one map is induced by the action of Zg on C(a, ) described above
and the other is induced by the standard action of ZZ on @Z. There is a map

T(a,p) x Xme &, xmp
given by

1

(9, t]x = gz € X909 = XmF

The proof that it is well defined is similar to the proof of Prop 4.7. Note that

T(a) =T(a, ).
There is a natural composition

T(8,0) x T'(a, ) — T(v, 6)

given by
[h, ] % [g,t] = [hg, s +1].

Also T'(a, ) contains an identity: the identity element e € G.

Definition 4.12. Let Twist?*(X) be the geometric realization of the nerve

of the topological groupoid
1T T(a, ) x Xme

(e, 8)€hom(Z2 ,G)*2
H Xima’

achom(Zk,G)

where the domain map d is the projection and the codomain map c is the

map defined above.
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Proposition 4.13. We have the following equivalence for all finite G-spaces
X:
Twisty, (X) =~ Twist?*(X).

Proof. We will construct a map of topological groupoids

[ Tla) x Xme o 11 T(a, B) x Xme
[o]€hom(Z2,G)/~ (e,8)€hom(ZL,G) %2

L "
[ xme [ xme

[e]€hom(Z],G) /~ achom(Zk,G)

that is an equivalence in the sense of Corollary 4.8 and Definition B.15 in [2].
Fix a collection of representatives of the conjugacy classes of hom(ZZ, G)/ ~.

On objects we’ll send
H Xima N H Xima

[o]€hom(Z2,G)/~ achom(Z,G)

by using the representatives of the conjugacy classes.
The map on morphisms

[T 7@xx™— J[T(a,B) x X™
[a]€hom(ZL,G) /~ (o, 8)

sends ([g,t],7) € T(a) x X'™* — ([g,t],2) € T(a, ) X X™*. The commu-
tativity of the necessary diagrams is clear.
To ease the notation let

(HO,Hl):< T x JI T(a)xxima)

[o]€hom(ZL,G) /~ [o]€hom(ZL,G)/~

and

GoG)=( T x= I T(@B)xx™e).

achom(Zr,G) (a,8)€hom(Z],G)*2

The map of topological groupoids above is then just

Hl fmo’r‘ Gl

el

H() — G().
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First consider the pullback
G Xg, Ho

along the maps d and f,. To show that f is essentially surjective we must
show that
Gl X Go Ho ﬂ Go

admits local sections, where m; is the projection onto the first factor. Since
fo» maps components homeomorphically to components the pullback is just
the components of

1T T(a,B) x Xme

(e, 8)€hom(Z2 ,G)*2

with « in the chosen reprentatives of the conjugacy classes. Now for a fixed
R ZZ — G, choosing an element of [g,t] € T'(«, B) allows one to construct
a section of c,

X" — T(a, B) x X™,

mapping
v (g1, 97" ).
To show that f is fully faithful we must show that the following square

is a pullback:

Hl fmor Gl

l(dvc) l(dvc)
HO % Ho(fobvfob)GO % GO

But this is clear, for if [a] # [f], then the preimage of X™® x X™# on the
right hand side of the square is empty.

Now it follows from Corollary 4.8 of 2] that the fat geometric realization
of the map f is an equivalence. The nerves of the topological groupoids are
“good” simplicial spaces in the sense of [7] Definition A.4 and this implies
that the geometric realization is canonically equivalent to the fat geometric
realization by Theorem A.1 of [7]. We conclude that the geometric realization
of f is an equivalence. O

When multiple groups are in use, we will write Twist$(—) to make it
clear what group Twist,(—) depends on.

A critical property of Twisty,(—) is the way that it interacts with abelian
subgroups of G.
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Proposition 4.14. Let H C G be an abelian subgroup of G, then
Twisty (G/H) ~ Twist! ().

Proof. We produce an equivalence of topological groupoids that provides
the desired equivalence after applying geometric realization. The map of
topological groupoids takes the form

1T T(a,a) x M —~ 1T T(8,8") x (G/H)™8
(e,')€hom(ZL , H) %2 (B,8")€hom(Zk ,G)*?
I I
H *ima H (G/H)lmﬁ

aehom(ZQ,H) BEhom(Zg,G)

Let ¢ : H — G denote the inclusion and let the map be defined on
objects by sending * € ™ to eH € (G/H)™%* and on maps by sending

T(a,a) x #™% — T(ioa,ioa’) x eH

via the inclusion C(a, /) — C(io a,i0 ).
We prove that the map is fully faithful and essentially surjective. To prove
that it is fully faithful we observe that the following square is a pullback:

I T(ea)xsmt——— [ T(3,8)x(G/H)™"

(@) €hom(ZE, H) %2 (B,8")€hom (Zk,G)*2

(&@l (m@l

[ wmex Q[ sme——  I] (G x I (G/H)

achom(Zh,H) achom(Zk, H) Bechom(Zk,G) Behom(Zk,G)

Note that eH € (G/H)™? if and only if im 8 C H. Also note that T'(a, o) =
() unless o« = o’ because H is abelian. The preimage of a point (eH,eH) €
(G/H)™P x (G/H)™#" consists of the collection [g,t] € T(3, 8') such that

gH = eH € (G/H)™9Ps ="

To have the equality gH = eH, g must be an element of H. Thus 8 =
since H is abelian. The square is a pullback because the subspace

{lg,tllg € H} CT(B,p)
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is homeomorphic to T'(a, «).
To prove that the map of topological groupoids is essentially surjective
we must show that ¢ o 7y:

I1 T(@ﬁ/)x(G/H)imﬂ)x( I (G/H)imﬁ)( I *ima>

(5,5’)€h0m(ZZ,G)2 Behom(Z;”,G) aehom(Ziﬁ,H)

0
1 @/m»?

Be€hom(Zk,G)

has local sections. As the codomain is a set it suffices to show that the map
is surjective. Given

gH € (G/H)™7

we will produce an element in the domain that maps to it. Let 3 = g~!4'g.
Then .
eH =g 'gH € (G/H)™P

so imf C H. Now [g,t] € T(3,8) sends eH € (G/H)™F to gH €
(G/H)™# . Thus the map is a surjection. O

We note some more properties of 7'(—).
fin
zh/
of topological groups and continuous maps under ZZ consisting of the finite
groups. The map

Proposition 4.15. Let Group;,, be the full subcategory of the category
T:a—T(a)

extends to a functor .
T : Group!™ — Group.
zh/
Proof. This follows in a straight-forward way from the fact that
C': Group!™ —s Group,
zh/

which sends a — C'(im «), is a functor. O
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Proposition 4.16. Let o : Zg — G, [ ZZ — Hand axf: Z’I} — GxH
be the product, then

T(a x B) = T(a) xg,/z T(8).

Proof. First note that the pullback does make sense because T'(«) and T'(5)
both come with canonical maps to Q,/ ZZ that send

lg,t] — t.

The isomorphism is given by

(g, ), ] = ([g,1], [h, 1]).
[l

Finally we give the construction of the topological part of the twisted
character map from height n to height ¢. Fix a finite group G. We produce
it as the realization of a map of topological groupoids.

Let k be such that every map Z7~* — G factors through A, = (Z/p*)"~".
Let v, : Zp~" — Ay be the canonical quotient.

We begin by extending the morphism space of TwistS ,(X).

Proposition 4.17. The morphism space of Twist¢ ,(X) can be extended to

H Ty x o) x X™m,

[@]€hom(Zp~t,G)/~
Proof. Let | € Aj.. We define the action to be

(1,9, t]x = a(l)gz = gr € X™*,

O
By Prop 4.16 we have that
1T T(y x @) x Xme o 1T T() Xg,/zn+ T(a) x X™¢
[o]chom(Zp~t,G)/~ [o]€hom(Zp~t,G)/~
> T( ) Xg, /z 11 T(a) x Xme,

[a]Ehom(ngt,G)/N
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It is easiest to think about this final term as being the morphisms of a
topological groupoid over the object space

* X, H Xima

[a] Ehom(Zg_t ,G)/~

by collapsing T'(y;) and Q,/ Zg*t to a point. This implies that the classifying
space of the topological groupoid

11 T(y X o) x Xme
[o]€hom(Zp~t,G)/~
I
H Xima

(@] Ehom(ZZﬂ5 ,G)/~

is
BT (%) X pg, 2z I ET(a) Xp) X ™
[a] Ehom(Z;L*t ,G)/~
or
BT (k) X g, zn— Twistyy_,(X).

The pullback is in fact a homotopy pullback because T'(y) — Q,/Z7~" is
surjective and so gives rise to a fibration when B(—) is applied.
The topological part of the character map

BT (W) X g, /zn- Twist® ,(X) — EG xg X

is constructed by realizing a map of topological groupoids

T(y X ) X xima Jme oo x
[a]ehom(ngt,G)/N

duc al|e

H Xim « fob X

[@]€hom(Zp~t,G)/~

We will define the map on objects f,, and the map on morphisms f,,,.. The
map fop is defined as the coproduct of the inclusions

Xme oy X,
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The map f,,- is a bit more complicated. For
([l,g,t],ﬁ(]) S T(/Yk X Oé) X )(ima7

we define
fmor + ([l g, 8], 2) = (ga(1) ™, ).
Note that the order switches and «(l) is inverted. We show this is well-
defined. For i € Zp™,
(gOz(l)_l,{L’) = fmor([laga t+ i]v ZL‘) = fmor([l + 'Vk(i)vga(i)vt]v‘T)
= (lga(@a( (i) a() ], 2) = ([ga() ], 2),

using the fact that a(v(i)) = a(7). It is clear that the square made up of f,
fmor, and the domains (projections) commutes. We show that the diagram
involving the codomain maps commutes:

-1

([l,g,t],x)—>(ga(l ,l‘)

)
| |
a(l)gr = gr — ga(l) "tz = gu.

As an example of the above construction we compute the topological map
from X = * and G = Z/p".

Example 4.18. We compute

BT () X g, jn—t Twiste/ (x) —> BZ/p".

n—

Because Z/p* is abelian each map « : Zg_t — 7Z/p* is its own conjugacy
class. Thus on objects we get

H s k.

achom(Zy~ ¢ Z/pk)

Fix an « as above. On morphisms in the path component corresponding to
a we have the subtraction group homomorphism

St T X @) = (A ® Z/pH) @y Q2™ — L/,

which sends
Sa ¢ (lvgvt) = g — Cl/(l)

28



When « is the zero map this is just the projection on to Z/p*. Put all
together on morphisms we get the disjoint union over the maps « of the
subtractions maps

M s

achom(Zy ™t 2/p*)
The realization of this map is thus

H Bs, : H BT (v, x a) — BZ/p",

achom(Zy =" Z/pF) achom(Zy~t,Z/p*)
or written another way a map
BT (&) X py, jzp- 1T BT (a) — BZ/p".
achom(Zy ™t Z/pk)
4.19 The Algebraic Map

The algebraic part of the twisted character map uses the properties of the
ring B, constructed and described in Section 3.1 to construct an appropriate
codomain for the twisted character map.
The discussion regarding gradings in [8] carries over to this situation.
Applying E, to the topological map constructed in the last section we
get
Ep(EG x¢ X) — Ep(BT () X pg, jzp—+ Twisty_ (X)),

We begin with an algebraic manipulation of the codomain of the topological
part of the character map.

Proposition 4.20. There is an isomorphism
ESL(BT(’}%)XBQP/Z;‘_tTWiStSft(X» = Eg(BT(fYk))@EQL(BQp/Z;_t)Eg(TWiStgft(X))'

Proof. Let us assume that n > 0 and let T = (S*)*"~*. The result follows
from the fact that the functors on T-spaces (with no finiteness hypotheses)

E%(BT(v) xpr ET x1Y)

and
Eg(BT(’Vk)) ® Eo(BT) ES(ET x7Y)
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are both cohomology theories. This includes the spaces in the proposition
by Remark 4.9. The first functor is a cohomology theory in Y because
it is the pullback along a fibration and this pullback commutes with all
homotopy colimits by [6]. The second is a cohomology theory in Y because
it is extension by a finitely generated free module. There is a natural map
from the tensor product to the other functor. It suffices to check that these
cohomology theories agree on T/A for any closed subgroup A C T. Now as
T/A = S'/A; x ... x S'/A,_; it suffices to check these one at a time and
here the isomorphism is clear. O

Example 4.21. Let s, be as in Example 4.18 in the previous section. We
compute E°(Bs,). We begin by computing E°(BT(a)). For a complete
EP-algebra R we have the correspondence

homeont go (Eg(BQp/ZZ’t), R) = homy(Z, ™", G, (R)),
where Z7~" = (Q,/Zy~")*. This carries over to T'(c).
hom g Eg(Eg(BT(a)), R) = homy,(T(a)*, Gg, (R)).

A presentation for T'(a)* as a Z,-module was given in Example 4.6 and this
gives a description of E)(BT(«)) as an Ep(BQ,/Z;")-algebra. Using the
coordinate and the presentation we have

Ep(BT() = E)lq, - -, gns, 2] /([P (@) = ([i)(01) F e, - - e, [ini] ()
Recall that

EL(BT (1)) = Eyla, Al/([P"]A - @)
The map s, factors through 7'(a X «):

T (v x @) 22 7/p" .
T(ax )
Now dualizing s gives the map (in the notation of Example 4.6)
(Z/pk)* — T(axa) = {b,... >bn—t7x7y|pk$ = pk?/ =01b1 + . inibn i},

defined by
l—=y—ux.
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We get the following explicit description of E%(Bs,,)
EY(Bsa) i x> (x —g,, ([0]A1 +6p, - +6p, lin-t]An—t))-

The algebraic part of the twisted character map will be assembled from
two maps: the canonical map of spectra

L:E, — LgwkE,
and the canonical flat map of rings
ir : B, (BT (w)) — By
The algebraic part of the twisted character map is
EL (BT (7)) O gx (B, /z2 ) Eyy(Twisty_ (X))
— B:®LK(t)E;(BQp/Z$_t)LK(t)E;(TWiStgft(X»'
It is the tensor product of the maps i, and L(TwistS_, (X)) over L(BQ,/Zy7).

This map composed with the topological map of the previous section gives
the twisted character map

Te : By (BEG x¢ X) — B @y, , pso,zp— Lrw Ey(Twisty_,(X)).

When we want to specify a space X in the twisted character map we will
write T (X) for the map above. We will use a shorthand for the codomain
of the twisted character map. Let

Bt*(TWiStS—t(X)) =B/ O Ly i (BQp/Z2™") LK(t)E:(TWiStS—t(X))~
Proposition 4.22. The map T is independent of the choice of k.

Proof. This follows from the proof of Proposition 3.13 in [§]. ]

Theorem 4.23. The map on global sections of the p*-torsion of p-divisible
groups
Go @7z Q' [p*] — G, [p"]

| |

Spfr 19 (By) Spec(E?)

is recovered by Ty /,x (x).
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Proof. We will use the results of Section 3.1 and the examples of the previous
sections. By Example 4.18 the topological part of the map gives

[I  EUBso:EXBZA) —  []  EUBT(k x ).

aehom(Z;L*tZ/pk) aEhom(ZZit,Z/pk)

By Example 4.21 this map sends

Now composing with the map to B, on the left and the map to L) ES(BT (@)
on the right sends A € E°(BT(y;)) to A € B, and z and ¢ € E°(BT(«))
to x and ¢ € Ly E)(BT (). All together this gives the map described in
Section 3.1: the global sections of the p*-torsion of the map of p-divisible
groups above. O]

4.24 The Isomorphism

In this section we prove by reduction to the case of G finite abelian and
X = % that for any finite G and finite G-space X there is an isomorphism

Bt®Eg Tq: Bt®E2 E;(EGXGX) i} B:®LK“)E;;(BQP/Z,’}_t)LK(t)E:L(TWiStgft (X))

The proof here follows the same lines as that in [8]. Because of this we
will only point out how to prove the essential properties of the Twist,,_;(—)
functor that allow for the reduction to cyclic p-groups where it differs from
the proof in [8].

Proposition 4.25. The functor Twist,_;(—) commutes with pushouts of
finite G-CW complexes.

Proof. This is similar to the proof in [8]. The main difference is that the
Borel construction in the definition of Twist, ;(—) has an infinite group.
The main point of the proof is that everything in sight is a colimit and the
groups of the form T'(a) for a : Z7~" — G are no exception. Let T'(a); be
the pushout in the sense of Proposition 4.2

n—t xp* n—t
7t —7
p p

.

Cima) —T(a);.
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The group T'(«); is finite and
T(a) = colim T'(«);.

)

O

Proposition 4.26. The functor Twist,_;(—) commutes with geometric re-
alization of simplicial finite G-CW complexes.

Proof. This follows from [8]. There are no difficulties in extending the result
there for the functor Fix,,_;(—) to Twist,_,(—). O

Now we follow [8]. Using the Bousfield-Kan spectral sequence the two
facts above allow us to reduce the isomorphism for transchromatic gener-
alized character maps to the case of finite G-CW complexes with abelian
stabilizers. Now Mayer-Vietoris reduces this to the case of BA for A a finite
abelian group. It may not be entirely clear that the cohomology theory in the
codomain of the twisted character map above has the Kunneth isomorphism
that we need to reduce to cyclic p-groups. We prove that now.

Proposition 4.27. Let G x H be a finite abelian group. Then
By (Twist&> (x)) =
B: (TWiStgft(*)) ®B§ (Twists,

n—t

() By (Twist,_, (%)).
Proof. This follows from the chain of homotopy equivalences

TwistS> [ () ~ 1T BT (a)

achom(Zy~ ¢, GxH)

1T B(T(ag) X, zn-+ Tam))

achom(Zy~ " ,Gx H)

[T BT(q) xpg, [T BT(an)

ag€hom(Z}~4,G) ag€hom(Zy~ ¢ H)

12

12

~ TwistS ,(x) X Twiste _, (%) Twist? ().
The result now follows from the fact that the map
TwistC ,(¥) — Twist®_, ()

is a fibration and the cohomology of the domain is a finitely generated free
module over the cohomology of the codomain just as in the proof of Propo-
sition 4.20. O
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The above propositions together with the work in [8] establish the main
theorem.

Theorem 4.28. The transchromatic twisted character map Y induces an
isomorphism when tensored up to B;

B, ®pm Ta : B, @y EX(EG x¢ X) — By (TwistS_,(X)).

4.29 Relation to [8]

There is a canonical topologically-induced quotient map B; — C; and a
canonical natural transformation

EG x¢g Fix,_(—) — Twist,_¢(—).

This can be used to recover the character map of [§].
The quotient map was described in Section 3.4. Recall that

EG x¢ Fix,_(X) ~ H EC(Im a) X¢(ima) Xima
[a]€hom(Z;~",G)/~
The natural transformation is induced by the inclusion
C(ima) = T(«).

We can map EG X Fix,_+(X) to Twist,,_(X) on components via the inclu-
sion above. Putting the map of rings and the map of spaces together we get
the map of equivariant cohomology theories

Bt ®LK(t)E»,OL(BQp/Z$7t) LK(t) E,;:( TWiStn_t (X))
—Cy @150 L Ej(EG X Fix, (X)),
Note that Gy & Q,/Zy~" is the pullback:

Go ® Qp/Zy ™ — Go ®gn-+ Qp~

| |

Spf,, (Ct) Spf, 4 () (Be).-

This implies that the composite
EX(EG x¢ X) —s B} (Twist,_4(X)) — C; (EG x¢g Fix,_1(X))

recovers a completed version of the character map ®¢ of [8].
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