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Transchromatic Generalized Character Maps
NATHANIEL STAPLETON

The generalized character map of Hopkins, Kuhn, and Ravenel [9] can be inter-
preted as a map of cohomology theories beginning with a height n cohomology
theory E and landing in a height 0 cohomology theory with a rational algebra of
coefficients that is constructed out of E . We use the language of p-divisible groups
to construct extensions of the generalized character map for Morava E -theory to
every height between 0 and n .

;

1 Introduction

In [9], Hopkins, Kuhn, and Ravenel develop a way to study cohomology rings of the
form E∗(EG×G X) in terms of a character map. The map developed was later used by
Ando in [1] to study power operations for Morava En and by Rezk in [20] to construct
the logarithmic cohomology operation for En . Hopkins, Kuhn, and Ravenel’s character
map can be interpreted as a map of cohomology theories beginning with a height n
cohomology theory E and landing in a height 0 cohomology theory with a rational
algebra of coefficients that they construct out of E . In this paper we use the language
of p-divisible groups to extend their construction so that the character map can land in
every height 0 ≤ t < n.

We provide motivation and summarize the main result. Let K be complex K -theory
and let R(G) be the complex representation ring of a finite group G. Consider a
complex representation of G as a G-vector bundle over a point. Then there is a natural
map R(G) → K0(BG). This takes a virtual representation to a virtual vector bundle
over BG by applying the Borel construction EG ×G −. It is a special case of the
Atiyah-Segal completion theorem [2] from the 60’s that this map is an isomorphism
after completing R(G) with respect to the ideal of virtual bundles of dimension 0.

Let L be a minimal characteristic zero field containing all roots of unity, and let
Cl(G; L) be the ring of class functions on G taking values in L . A classical result in
representation theory states that L is the smallest field such that the character map

R(G) −→ Cl(G,L)
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1002 Nathaniel Stapleton

taking a virtual representation to the sum of its characters induces an isomorphism
L⊗ R(G)

∼=−→ Cl(G; L) for every finite G.

Let En be the Morava En -theory associated to the universal deformation of a height n
formal group law over a perfect field k of characteristic p. Hopkins, Kuhn, and Ravenel
build, for each Morava E-theory En , an equivariant cohomology theory that mimics
the properties of Cl(G,L) and is the receptacle for a map from Borel equivariant En .
They construct a flat even periodic E∗n -algebra L(En)∗ and define, for X a finite G-CW
complex, the finite G-CW complex

Fixn(X) =
∐

α∈hom(Zn
p,G)

Ximα.

Then they define a Borel equivariant cohomology theory

L(En)∗(Fixn(X))G =
(
L(E∗n)⊗E∗n E∗n(Fixn(X))

)G

and construct a map of Borel equivariant cohomology theories

E∗n(EG×G X) −→ L(En)∗(Fixn(X))G.

The codomain of this map is closely related to the class functions on G taking values
in L(En)∗ . In fact, when X is a point, the codomain reduces to “generalized class
functions” on

hom(Zn
p,G) = {(g1, . . . , gn)|gph

i = e for some h, [gi, gj] = e}

considered as a G-set by pointwise conjugation. As in the case of the representation
ring of a finite group, there is an isomorphism

L(En)∗ ⊗E∗n E∗n(EG×G X)
∼=−→ L(En)∗(Fixn(X))G.

Let GEn be the formal group associated to En and GEn[pk] the subscheme of pk -torsion.
The ring L(En)0 satisfies an important universal property: it is the initial ring extension
of p−1E0

n such that for all k , GEn[pk], when pulled back over L(En)0 , is canonically
isomorphic to the constant group scheme (Z/pk)n .

(Z/pk)n //

��

GEn[pk]

��
Spec(L(En)0) // Spec(E0

n)

In this paper we will take advantage of the fact that this result can be rephrased in the
language of p-divisible groups. Let R be a ring. A p-divisible group over R of height
n is an inductive system (Gv, iv) such that
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(1) Gv is a finite free commutative group scheme over R of order pvn .

(2) For each v, there is an exact sequence

0 −→ Gv
iv−→ Gv+1

pv

−→ Gv+1

where pv is multiplication by pv in Gv+1 .

Associated to every formal group G over a p-complete ring R is a p-divisible group

G G[p] i1−→ G[p2] i2−→ . . . .

This is the ind-group scheme built out of the pk -torsion for varying k . The only
constant p-divisible groups are products of Qp/Zp . The ring that Hopkins, Kuhn,
and Ravenel construct is the initial extension of p−1E0

n such that the p-divisible group
associated to GEn pulls back to a constant p-divisible group.

For GEn , we have OGEn [pk]
∼= E0

n(BZ/pk) = π0F(BZ/pk,En), the homotopy groups
of the function spectrum. The pullback of GEn[pk] constructed by Hopkins, Kuhn,
and Ravenel in [9] factors through π0LK(0)(F(BZ/pk,En)), the rationalization of the
function spectrum. The spectrum of this Hopf algebra is the pk -torsion of an étale
p-divisible group. Rezk noted that there are higher analogues of this: Fix an integer
t such that 0 ≤ t < n. Then Spec of π0(LK(t)F(BZ/pk,En)) gives the pk -torsion of a
p-divisible group G over LK(t)E0

n .

We prove that the standard connected-étale short exact sequence for p-divisible groups
holds for G over LK(t)En . There is a short exact sequence

0 −→ G0 −→ G −→ Get −→ 0,

where G0 is the formal group associated to LK(t)En and Get is an ind-étale p-divisible
group. The height of G is the height of G0 plus the height of Get .

These facts suggest that there may be results similar to those of [9] over a ring for
which the p-divisible group has a formal component, but for which the étale part has
been made constant. This is the main theorem of the paper.

First we define, for X a finite G-CW complex, the finite G-CW complex

Fixn−t(X) =
∐

α∈hom(Zn−t
p ,G)

Ximα.

Theorem For each 0 ≤ t < n there exists an LK(t)E0
n -algebra Ct such that the pullback

G0 ⊕Qp/Zn−t
p

//

��

G //

��

GEn

��
Spec(Ct) // Spec(LK(t)E0

n) // Spec E0
n
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is the sum of a height t formal group by a constant height n− t p-divisible group. The
ring Ct is non-zero and flat over E0

n and can be used to make a height t cohomology
theory. Define

C∗t (EG×G Fixn−t(X)) = Ct ⊗LK(t)E0
n

LK(t)E∗n(EG×G Fixn−t(X)).

For all finite G we construct a map of equivariant theories on finite G-CW complexes

ΦG : E∗n(EG×G X) −→ C∗t (EG×G Fixn−t(X))

such that

Ct ⊗E0
n

ΦG : Ct ⊗E0
n

E∗n(EG×G X)
∼=−→ C∗t (EG×G Fixn−t(X))

is an isomorphism of equivariant cohomology theories. The map of Hopkins, Kuhn,
and Ravenel is recovered when t = 0.

This map is intimately related to the algebraic geometry of the situation. In fact, when
X = ∗ and G = Z/pk this map recovers the global sections of the map on pk -torsion
G0[pk]⊕ (Z/pk)n−t −→ GEn[pk].

Acknowledgements It is a pleasure to thank Charles Rezk for his help and guidance
over several years. I would like to thank Matt Ando, Mark Behrens, Martin Fran-
kland, David Gepner, Bert Guillou, David Lipsky, Haynes Miller, Jumpei Nogami,
Rekha Santhanam, Olga Stroilova, and Barry Walker for helpful conversations and
encouragement. I would also like to thank the referee for many helpful suggestions.

2 Transchromatic Geometry

Let 0 ≤ t < n and fix a prime p. In this section we study the p-divisible group
obtained from GEn by base change to π0LK(t)En . In the first section we prove that it is
the middle term of a short exact sequence of p-divisible groups

0 −→ G0 −→ G −→ Get −→ 0,

where the first group is formal and the last is étale. In the second section we construct
the ring extension of π0LK(t)En over which the p-divisible group splits as a sum of a
height t formal group and a constant height n− t étale p-divisible group.
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2.1 The Exact Sequence

This paper will be concerned with the Morava E-theories En and their localizations
with respect to Morava K(t)-theory for 0 ≤ t < n: LK(t)En . En is an even periodic
height n theory and LK(t)En is an even periodic height t theory. Basic properties of
these cohomology theories can be found in ([19], [10], [9], [17]) for instance. Let k be
a perfect field of characteristic p. The coefficients of these theories are

E0
n
∼= W(k)[[u1, . . . , un−1]]

LK(t)E0
n
∼= W(k)[[u1, . . . , un−1]][u−1

t ]∧(p,...,ut−1).

The second isomorphism follows from Theorem 1.5.4 in [10]. Thus the ring LK(t)E0
n

is obtained from E0
n by inverting the element ut and then completing with respect to

the ideal (p, u1, . . . , ut−1).

Let E be one of the cohomology theories above. Classically, it is most common to study
these cohomology theories in terms of the associated formal group GE = Spf(E0(BS1)).
However, in this paper we will be studying these cohomology theories in terms of
their associated p-divisible group. First we fix a coordinate for the formal group
x : OGE

∼= E0[[x]]. This provides us with a formal group law GE(x, y) ∈ E0[[x, y]]. The
coordinate can be used to understand the associated p-divisible group.

Let GE[pk] = Spec(E0(BZ/pk)) = homE0(E0(BZ/pk),−). As BZ/pk is an H-space,
E0(BZ/pk) is a Hopf algebra, and GE[pk] is a commutative group scheme. The
following is a classical theorem and can be found in [9],[18].

Theorem 2.1 Given a generator βk ∈ (Z/pk)∗ = hom(Z/pk, S1), there is an isomor-
phism E0(BZ/pk) ∼= E0[[x]]/([pk](x)), where [pk](x) is the pk -series for the formal
group law associated to E .

The dual is needed because Z/pk −→ S1 induces E0(BS1) −→ E0(BZ/pk). This
allows us to use the coordinate for the formal group in order to understand the codomain.
The Weierstrass preparation theorem implies the following result.

Proposition 2.2 ([9], Proposition 5.2) If the height of E is n then E0[[x]]/([pk](x)) is
a free E0 -module with basis {1, x, . . . xpkn−1}.

Thus we see that GE[pk] is a finite free group scheme of order pkn . We now have the
group schemes that we would like to use to form a p-divisible group. We must define
the maps that make them into a p-divisible group.
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For each k fix a generator βk ∈ (Z/pk)∗ . Define ik : Z/pk −→ Z/pk+1 to be the
unique map such that βk+1 ◦ ik = βk . This provides us with a fixed isomorphism

colim
k

Z/pk ∼=−→ S1[p∞] ⊂ S1.

Then, with the coordinate,

i∗k = E0(Bik) : E[[x]]/([pk+1](x)) −→ E[[x]]/([pk](x)) : x 7→ x.

The spectrum of this map is the inclusion ik : GE[pk] −→ GE[pk+1] and makes the
inductive sequence

GE[p] i1−→ GE[p2] i2−→ . . .

a p-divisible group.

Before continuing we establish some notation. Let Lt = LK(t)E0
n and It = (p, u1, . . . ut−1).

Note that It is not necessarily a maximal ideal. For a scheme X over Spec(R) and a
ring map R −→ S , let

S⊗ X = Spec(S)×Spec(R) X.

Given a p-divisible group GE over E0 and a ring map E0 −→ S , let S ⊗ GE be the
p-divisible group such that (S⊗GE)[pk] = S⊗ (GE[pk]).

Here we collect a few facts ([19]) regarding the pk -series for the formal group law
GEn(x, y) that we will need later. For 0 ≤ h < n,

[pk](x) = [pk]h(xpkh
) = (uh)(phk−1)/(ph−1)(xpkh

) + . . . mod (p, u1, . . . uh−1).

In particular,

[p](x) = [p]h(xph
) = uhxph

+ . . . mod (p, u1, . . . uh−1).

There is a localization map En −→ LK(t)En that induces E0
n −→ Lt , and GLK(t)En(x, y)

is obtained from GEn(x, y) by applying this map to the coefficients of the formal group
law. The Weierstrass preparation theorem implies that

[pk](x) = fk(x)wk(x)

in E0
n[[x]], where fk(x) is a monic degree pkn polynomial and wk(x) is a unit. In Lt[[x]],

[pk](x) = gk(x)vk(x),

where gk(x) is a monic degree pkt polynomial and vk(x) is a unit. From now on
the symbol [i](x) will stand for the i-series for the formal group law GEn(x, y) as an
element of E0

n[[x]] or an element of Lt[[x]]. The above discussion implies that [i](x)
may have different properties depending on the ground ring. The ground ring should
be clear from context.

Now we focus our attention on the p-divisible group Lt ⊗GEn .
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Proposition 2.3 The p-divisible group Lt ⊗ GEn has height n and the p-divisible
group GLK(t)En has height t . The p-divisible group GLK(t)En is a sub-p-divisible group
of Lt ⊗GEn .

Proof The heights of the p-divisible groups follow immediately from Prop 2.2. We
show that GLK(t)En is a sub-p-divisible group of Lt ⊗ GEn on the level of pk -torsion.
We have the following sequence of isomorphisms:

Lt ⊗E0
n

E0
n(BZ/pk) ∼= Lt ⊗E0

n
E0

n[[x]]/([pk](x))
∼= Lt ⊗E0

n
E0

n[x]/(fk(x))
∼= Lt[x]/(fk(x))

and

(LK(t)En)0(BZ/pk) ∼= Lt[[x]]/([pk](x))
∼= Lt[x]/(gk(x)),

where fk(x) and gk(x) are as above. The canonical map

E0
n(BZ/pk) −→ (LK(t)En)0(BZ/pk)

implies that fk(x) = gk(x)hk(x) as polynomials where hk(x) = vk(x)/wk(x). This
implies that GLK(t)En[pk] is a subgroup scheme of Lt ⊗ GEn[pk] and it is clear that the
structure maps fit together to give a map of p-divisible groups.

Throughout this paper we use very little formal algebraic geometry. However, it is
important to note a certain fact that only holds over

SpfIt
(Lt) = colim

(
Spec(Lt/It) −→ Spec(Lt/I2

t ) −→ Spec(Lt/I3
t ) −→ . . .

)
.

Proposition 2.4 Over SpfIt
(Lt), GLK(t)En is the connected component of the identity

of Lt ⊗GEn .

Proof This is the same as saying that GLK(t)En is the formal component of the p-
divisible group Lt ⊗ GEn over SpfIt

(Lt). Once again we prove this by working with
the pk -torsion. The proof has two steps. First we give an explicit decomposition of
OLt⊗GEn [pk] as a product of two rings. We identify one of the factors as OGLK(t)En [pk] .
Secondly, we show that OGLK(t)En [pk] is connected.

The rings Lt[x]/(fk(x)), Lt[x]/(gk(x)), and Lt[x]/(hk(x)) are all finitely generated free
Lt -modules because the polynomials are monic. Thus the natural map

Lt[x]/(fk(x)) −→ Lt[x]/(gk(x))× Lt[x]/(hk(x))
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has the correct rank on both sides. We must show that it is surjective.

By Nakayama’s lemma ([7], Corollary 4.8), it suffices to prove this modulo It . Modulo
It , gk(x) = xpkt

and hk(x) has constant term a unit, a power of ut , and smallest
nonconstant term degree xpkt

. Thus (gk(x)) and (hk(x)) are coprime and the map is an
isomorphism. Note that

OGLK(t)En [pk]
∼= Lt[x]/(gk(x)).

To prove the connectedness, first note that SpfIt
(Lt) is connected. This is because the

underlying space of SpfIt
(Lt) is the underlying space of

Spec(Lt/It) = Spec(k[[ut, . . . , un−1]][u−1
t ]),

which has no zero divisors.

For the same reason, it suffices to check that

Spec(OGLK(t)En [pk]/It)

is connected to prove that GLK(t)En[pk] is connected over SpfIt
(Lt). However, we have

the following sequence of isomorphisms

OGLK(t)En [pk]/It ∼= (Lt/It)[[x]]/([pk](x))

∼= (Lt/It)[[x]]/(xpk
)

∼= (Lt/It)[x]/(xpk
).

The last ring is connected because, modulo nilpotents, it is just Lt/It .

We conclude that the connected component of the identity of Lt⊗GEn[pk] is isomorphic
to GLK(t)En[pk].

Let G = Lt ⊗GE and G0 = GLK(t)En .

Recall that we are working to prove that the p-divisible group G is the middle term of
a short exact sequence

0 −→ G0 −→ G −→ Get −→ 0,

where the first p-divisible group is formal and the last is étale. This will come from an
exact sequence at each level

0 −→ G0[pk] −→ G[pk] −→ Get[pk] −→ 0.

Next we show that Get[pk] is in fact étale (as its nomenclature suggests). We begin by
giving a description of the global sections of Get[pk].
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The group scheme Get[pk] is the quotient of G[pk] by G0[pk]. It can be described as
the coequalizer of

G0[pk]×G[pk]
µ //
π
// G[pk] ,

where the two maps are the multiplication, µ, and the projection, π .

Using the methods of Demazure-Gabriel in [5] as explained in Section 5 of [21], we
can describe the global sections of Get[pk], or the equalizer

OGet[pk] −→ OG[pk] ⇒ OG[pk] ⊗OG0[pk]

by using a norm construction.

Let R
f−→ S be a map of rings, where S is a finitely generated free R-module. Given

u ∈ S , multiplication by u is an R-linear endomorphism of S . Thus its determinant is
an element of R. Let Nf : S −→ R be the multiplicative norm map

Nf (u) = det(−× u),

the map that sends u ∈ S to the determinant of multiplication by u. Nf is not additive.
The basic properties of the norm are described in [21].

It is shown in [21] that for x ∈ OG[pk] , Nπµ∗(x), which is naturally an element ofOG[pk] ,
actually lies in OGet[pk] . Let y = Nπµ∗(x). It is also shown that if i : G0[pk] −→ G[pk]
is the inclusion, then i∗y = 0.

Using these facts we arrive at the following proposition.

Proposition 2.5 There is an isomorphism OGet[pk]
∼= Lt[y]/(jk(y)) where jk(y) is a

monic polynomial of degree pk(n−t) .

Proof Recall that we have given more explicit descriptions of OG[pk] and OG0[pk] :

OG[pk]
∼= Lt[x]/(fk(x))

OG0[pk]
∼= Lt[x]/(gk(x)).

To begin we see that i∗(y) = 0 implies that gk(x)|y in Lt[x]/(fk(x)).

It turns out to be easy to understand y mod It . This is because the norm com-
mutes with quotients. When working mod It , gk(x) = xpkt

. So OG[pk]×G0[pk]/It ∼=
(Lt/It)[x, z]/(fk(x), zpkt

) and µ∗x = x mod z because µ∗x is the image of the formal
group law in (Lt/It)[x, z]/(fk(x), zpkt

). So the matrix for multiplication by µ∗x in the
basis 1, z, . . . , zpkt−1 is upper triangular with diagonal entries x . Thus y = Nπµ∗x =

xpkt
mod It .

Algebraic & Geometric Topology XX (20XX)



1010 Nathaniel Stapleton

The Lt -algebra OGet[pk] is a subalgebra of OG[pk] that is free as an Lt -module. As
y ∈ OGet[pk] so is yl = Nπµ∗xl . Now as each of {1, y, . . . , yp(n−t)k−1} are linearly
independent mod It , they are linearly independent in Lt[x]/(fk(x)). Also Nakayama’s
lemma implies that they are part of a basis for Lt[x]/(fk(x)), because the set is part
of a basis mod It . A quick count of this set shows that it does span OGet[pk] . Thus
OGet[pk]

∼= Lt[y]/(jk(y)) where jk(y) is a monic polynomial.

Corollary 2.6 There is an isomorphism

OGet[pk]/It ∼= (Lt/It)⊗E0
n

E0
n[[y]]/([pk]t(y)).

Proof We have noted that [pk](x) = fk(x) · wk(x) where wk(x) is a unit, and that

[pk](x) = [pk]t(xpkt
) = utxptk

+ . . . mod It.

Thus [pk]t(xpkt
) = fk,t(xpkt

)wk,t(xpkt
) mod It , where wk,t is a unit. In the previous

proposition we showed that jk(y) = fk,t(y) mod It . Thus

OGet[pk]/It ∼= (Lt/It)[y]/(jk(y)) ∼= (Lt/It)⊗E0
n

E0
n[[y]]/([pk]t(y)).

Proposition 2.7 The scheme Get[pk] is an étale scheme.

Proof Consider It as an ideal of En . We show that ut|[pk]
′
t(y) in (En/It)[[y]]/[pk]t(y).

Indeed,
[pk]t(y) = [pk]t+1(ypk

) mod ut

and as we are working in characteristic p, [pk]
′
t(y) = 0 mod ut .

Now it is clear that

1⊗ [pk]′t(y) = 1⊗ (ut + . . .) = ut ⊗ (1 + . . .)

is a unit in (Lt/It)⊗E0
n

E0
n[[y]]/[pk]t(y).

But now [pk]t(y) = jk(y)wk,t(y) implies that

[pk]′t(y) = j′k(y)wk,t(y) + jk(y)(wk,t)′(y) mod It.

As the second term is divisible by jk(y), it vanishes. We see that j′k(y) is a unit, and as
units lift, j′k(y) ∈ O×Get[pk] . The result follows from Corollary 3.16 in [15].
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2.8 Splitting the Exact Sequence

Our goal is to algebraically construct the initial extension of Lt over which the p-
divisible group Lt ⊗ GEn splits as the sum of the connected part and a constant étale
part. This is similar to work of Katz-Mazur in Section 8.7 of [11]. Although we often
suppress the notation, all groups in this section are considered to be constant group
schemes.

Initially we want to find the Lt -algebra that represents the functor

hom(Qp/Zn−t
p ,G) : : R 7→ homp -divisible (R⊗Qp/Zn−t

p ,R⊗G).

This was done for t = 0 in [9]. The construction here is analogous, but stated more
algebro-geometrically. It turns out to be convenient for working with the coordinate
and for reasons of variance to use the duals of groups as well as the groups themselves.

Let Λk = (Z/pk)n−t . The following is a corollary of Theorem 2.1.

Corollary 2.9 Given Λk and a set βk
1, . . . , β

k
n−t of generators of Λ∗k there is an

isomorphism E0
n(BΛk) ∼= E0

n[[x1, . . . , xn−t]]/([pk](x1), . . . , [pk](xn−t)).

In this case, one uses the map to the product βk
1 × . . .× βk

n−t : Λk −→ S1 × . . .× S1

to obtain the result using the fixed coordinate.

Given a sequence of epimorphisms Λ1
ρ2←− Λ2

ρ3←− . . ., let a coherent set of generators
for the dual sequence be, for each k , a set of generators {βk

1, . . . , β
k
n−t} for Λ∗k such

that p · βk+1
h = ρ∗k+1(βk

h). It is clear that a coherent system of generators for the dual
sequence exists for any sequence of epimorphisms of the form above.

Proposition 2.10 Given a coherent system of generators for the dual sequence of
the above sequence of epimorphisms, the map E0

n(Bρk) : E0
n(BΛk) −→ E0

n(BΛk+1) is
induced by xi 7→ [p](xi).

Proof This follows immediately from the proof of the previous corollary and the
definition of a coherent system of generators.

Given βk
i : Λk −→ S1 , a generator of the dual group, and βk : Z/pk −→ S1 as

defined right after Prop 2.2, there exists a unique fi : Λk −→ Z/pk making the triangle
commute. Using {fi}i∈{1,...,n−t} and [9], Lemma 5.9, this provides an isomorphism

E0
n(BZ/pk)⊗n−t ∼=−→ E0

n(BΛk).

Next consider the functor from Lt -algebras to sets given by

hom(Λ∗k ,G[pk]) : R 7→ homgp−scheme(R⊗ Λ∗k ,R⊗G[pk])
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Lemma 2.11 The functor hom(Λ∗k ,G[pk]) is representable by the ring Lt⊗E0
n
E0

n(BΛk).
In fact, for every choice of generators of Λ∗k there is an isomorphism

homLt (Lt ⊗E0
n

E0
n(BΛk),−) ∼= hom(Λ∗k ,G[pk]).

Proof Let {βk
1, . . . , β

k
n−t} be generators of Λ∗k . Recall that these generators determine

the isomorphism

Lt ⊗E0
n

E0
n(BΛk) ∼= Lt ⊗E0

n
E0

n(BZ/pk)⊗n−t = O⊗(n−t)
G[pk] .

Let f : Λ∗k −→ R⊗G[pk], then f ∗ : R⊗LtOG[pk] −→
∏
Λ∗k

R. The generators {βk
1, . . . , β

k
n−t}

induce n − t maps of R-algebras R ⊗Lt OG[pk] −→ R, which induces a map R ⊗Lt

Lt ⊗E0
n

E0
n(BΛk) −→ R. This is determined by the map of Lt -algebras

Lt ⊗E0
n

E0
n(BΛk) −→ R.

The reverse process gives the map

homLt (Lt ⊗E0
n

E0
n(BΛk),−) −→ hom(Λ∗k ,G[pk]).

Now we permanently fix a sequence of epimorphisms

Λ1
ρ2←− Λ2

ρ3←− Λ3 ←− . . .

and a coherent set of generators for the duals, {βk
i }i∈1,...,(n−t) ∈ Λ∗k .

Let
C′t = colim

k
Lt ⊗E0

n
E0

n(BΛk),

where the colimit is over the maps Lt ⊗E0
n

E0
n(Bρk).

Next we show that C′t represents the the functor from Lt -algebras to sets given by

hom(Qp/Zn−t
p ,G) : R 7→ homp -divisible (R⊗Qp/Zn−t

p ,R⊗G).

Proposition 2.12 The Lt -algebra C′t represents the functor hom(Qp/Zn−t
p ,G).

Proof First notice that

homLt (C
′
t,R) ∼= homLt (colim

k
Lt ⊗E0

n
E0

n(BΛk),R)

∼= lim
k

homgp−scheme(R⊗ Λ∗k ,R⊗G[pk]).
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An element of the inverse limit is precisely a map of p-divisible groups. This is because
the diagram

Λ∗k−1
ρ∗k //

��

Λ∗k

��
G[pk−1]

ik // G[pk]

commutes for all k .

Corollary 2.13 Over C′t there is a canonical map of p-divisible groups Qp/Zn−t
p −→

G.

Proof This is the map of p-divisible groups corresponding to the identity map IdC′t .

Because there is a canonical map Qp/Zn−t
p −→ G over C′t there is also a canonical

map G0 ⊕Qp/Zn−t
p −→ G using the natural inclusion G0 −→ G.

The p-divisible group G0 ⊕ Qp/Zn−t
p is a p-divisible group of height n with étale

quotient the constant p-divisible group Qp/Zn−t
p . Over C′t the map G0⊕Qp/Zn−t

p −→
G induces a map Qp/Zn−t

p −→ Get ; our next goal is to find the minimal ring extension
of C′t over which this map is an isomorphism. To understand this we must analyze Get

and prove an analogue of Proposition 6.2 in [9].

We move on to analyzing Get over C′t , that is, we study the canonical map Qp/Zn−t
p −→

Get and determine the minimal ring extension of C′t over which it is an isomorphism.
We begin with a fact about Get and some facts about finite group schemes.

Proposition 2.14 [4] Let Lt/It −→ K be a map to an algebraically closed field. Then
K ⊗Get ∼= (Qp/Zp)n−t .

Prior to proving our analogue of Prop 6.2 in [9] we need a key lemma.

Lemma 2.15 Let G be a finite free commutative group scheme over a ring R such
that OG ∼= R[x]/(f (x)) where f (x) is a monic polynomial such that x|f (x). Then in
OG×G ∼= R[x]/(f (x)) ⊗R R[y]/(f (y)) the two ideals (x − y) and (x −G y) are equal.
That is x−G y = (x− y) · u where u is a unit.
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Proof Consider the two maps, ∆ : G −→ G × G and i : ker(−G) −→ G × G the
inclusion of the kernel of G × G −G−→ G. By considering the functor of points it is
clear that both are the equalizer of

G×G
π1 //
π2
// G.

Thus we have the commutative triangle

ker(−G)
∼= //

%%

G

||
G×G

After applying global sections it suffices to find the generators of the kernels of ∆∗ and
i∗ . It is clear that ∆∗ : R[x]/(f (x)) ⊗R R[y]/(f (y)) −→ R[x]/(f (x)) must send x 7→ x
and y 7→ x . Thus (x− y) must be in ker(∆∗) and as ∆∗ is surjective and we have the
isomorphism R[x]/(f (x))⊗R R[y]/(f (y))/(x− y) ∼= R[x]/(f (x)), the ideal (x− y) must
be the whole kernel.

To understand i∗ , we note that ker(−G) is the pullback

ker(−G) //

��

p

G×G
−G
��

e // G

.

Global sections gives Oker(−G) ∼= R⊗R[x]/(f (x)) (R[x]/(f (x))⊗R R[y]/(f (y))) where x is
sent to 0 ∈ R and x −G y in R[x]/(f (x)) ⊗R R[y]/(f (y)). Thus the kernel of i∗ is the
ideal (x−G y).

Let α ∈ Λ∗k . Given a homomorphism

φ : Λ∗k −→ R⊗Get[pk],

let φ(α) be the restriction of this map to α . Using the description of OGet[pk] from
Prop 2.5, the global sections of φ(α) are the map

φ(α)∗ : R⊗Lt Lt[y]/(jk(y)) −→ R.

Now we define a function
φy : Λ∗k −→ R,

by φy(α) = φ(α)∗(y). The following is our analogue of Prop 6.2 in [9].
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Proposition 2.16 Let R be an Lt -algebra. The following conditions on a homomor-
phism

φ : Λ∗k −→ R⊗Get[pk]

are equivalent:
i. For all α 6= 0 ∈ Λ∗k , φy(α) is a unit.
ii. The Hopf algebra homomorphism

R[y]/(jk(y)) ∼= R⊗Lt OGet[pk] −→
∏
Λ∗k

R

is an isomorphism.

Proof The proof of this proposition follows the proofs of Proposition 6.2 and Lemma
6.3 in [9]. With respect to the bases consisting of the powers of y and the obvious
basis of the product ring corresponding to the elements of Λ∗k , the matrix of the Hopf
algebra map is the Vandermonde matrix of the set φy(Λ∗k ).

Assuming i. we must show that the determinant of the Vandermonde matrix, ∆, is a
unit. As in [9], for elements x, y of a ring S , we will write x ∼ y if x = uy for u a
unit. As the matrix is Vandermonde, ∆ ∼

∏
αi 6=αj∈Λ∗k

(φy(αi)− φy(αj)).

Using Prop 2.15 we have∏
(φy(αi)− φy(αj)) ∼

∏
(φy(αi)−Get φy(αj))

=
∏

(φy(αi − αj))

=
∏
α 6=0

∏
αi−αj=α

φy(α)

=
∏
α 6=0

φy(α)|Λ
∗
k |.

In a ring a product of elements is a unit if and only if each of the elements is a unit.
Thus the formulas above imply the reverse implication as well.

As an aside, in [9] it is also shown that p must be inverted for φ to be an isomorphism.
This is not the case in our situation. The analagous statement is that ut must be inverted,
and it was already inverted in order to form Get .

Prop 2.16 seems to imply that the smallest extension of C′t over which the canonical

map Qp/Zn−t
p

φ−→ Get is an isomorphism is precisely the localization with respect to
the multiplicatively closed subset generated by φy(α) for all α ∈ Qp/Zn−t

p . This is
what we prove next.
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Proposition 2.17 The functor from Lt -algebras to sets given by

IsoG0[pk]/(G0[pk]⊕ Λ∗k ,G[pk]) : R 7→ IsoG0[pk]/(R⊗G0[pk]⊕ Λ∗k ,R⊗G[pk])

is representable by a nonzero ring Ck
t with the property that the map Lt/It

i−→
Ck

t /(It · Ck
t ) is faithfully flat.

Proof Let Sk be the multiplicative subset of Lt ⊗E0
n

E0
n(BΛk) generated by φy(Λ∗k ) for

the canonical map φ : Λ∗k −→ (Lt ⊗E0
n

E0
n(BΛk)) ⊗ Get[pk]. Let Ck

t = S−1
k (Lt ⊗E0

n

E0
n(BΛk)). For an Lt -algebra R, a map from Ck

t to R is a map Λ∗k
φ−→ R ⊗ G[pk]

such that φy(α) is a unit in R for all α 6= 0 ∈ Λ∗k . Postcomposition with the map
R⊗G[pk] −→ R⊗Get[pk] gives a map

Λ∗k
φ−→ R⊗Get[pk]

that is an isomorphism by Proposition 2.16. Then

homLt (Lt ⊗E0
n

E0
n(BΛk),R) ∼= homgp−scheme(Λ∗k ,R⊗G[pk])

and

homLt (C
k
t ,R) ∼= IsoG0[pk]/(R⊗G0[pk]⊕ Λ∗k ,R⊗G[pk]),

the isomorphisms under G0[pk]. The last isomorphism is due to the 5-lemma applied
to (see [16] for embedding categories of group schemes in abelian categories)

0 // R⊗G0[pk] //

=
��

R⊗G0[pk]⊕ Λ∗k
//

��

Λ∗k
//

∼=
��

0

0 // R⊗G0[pk] // R⊗G[pk] // R⊗Get[pk] // 0.

Thus over Ck
t there is a canonical isomorphism G0[pk]⊕ Λ∗k −→ G[pk].

It is vital that we show that Ck
t is nonzero. We will do this by showing that Lt/It

i−→
Ck

t /It is faithfully flat and thus an injection. The map i is flat because (Lt ⊗E0
n

E0
n(BΛk))/It is a finite module over Lt/It and localization is flat. To prove that it is

faithfully flat we use the same argument found in [9]. Consider a prime P ⊂ Lt/It . Let

Lt/It
θ−→ K be a map to an algebraically closed field with kernel exactly P . This can

be achieved by taking the algebraic closure of the fraction field of the integral domain
(Lt/It)/P .
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Prop 2.14 implies that Get[pk](K) ∼= Λ∗k , fixing an isomorphism provides a map

Ck
t /It

Ψ−→ K that extends θ . We have

Ck
t /It

Ψ // K

Lt/It

OO

θ

>>

and ker(Ψ) is a prime ideal of Ck
t that restricts to (or is a lift of) P . The map i is a flat

map that is surjective on Spec. This implies that it is faithfully flat (see [13] 4.D).

The localization in the above proposition can be applied to both sides of Lt⊗E0
n
E0

n(Bρk)
and the map is well-defined. Thus over the colimit Ct = colim

k
Ck

t , following Prop

2.12, there is a canonical isomorphism Ct ⊗G ∼= Ct ⊗ (G0 ⊕Qp/Zn−t
p ).

It follows that there is a canonical map

ik : E0
n(BΛk) −→ Lt ⊗E0

n
E0

n(BΛk) −→ Ct.

Corollary 2.18 The ring Ct is the initial Lt -algebra equipped with an isomorphism

Ct ⊗G ∼= G0 ⊕Qp/Zp.

Proof Let R be an Lt -algebra with a fixed isomorphism

R⊗G[pk] ∼= R⊗ (G0[pk]⊕ (Z/pk)n−t).

By Lemma 2.11, corresponding to the inclusion R ⊗ Λ∗k
f−→ R ⊗ G[pk] there is a

map Lt ⊗E0
n

E0
n(BΛk) −→ R. Since f induces an isomorphism onto the étale part of

R⊗Lt G[pk], by Prop 2.17 the map

Lt ⊗E0
n

E0
n(BΛk) −→ R

factors through

Lt ⊗E0
n

E0
n(BΛk) −→ Ck

t .
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3 Transchromatic Generalized Character Maps

We move on to defining the character map and we show that it induces an isomorphism
over Ct . The point of the preceding discussion and the construction of Ct is that we
are going to use Ct to construct a map of equivariant cohomology theories for every
finite group G

ΦG : E∗n(EG×G X) −→ C∗t (EG×G Fixn−t(X)).

All cohomology theories are considered to be defined for finite G-spaces. The domain
of ΦG is Borel equivariant En and the codomain is Borel equivariant Ct applied to
Fixn−t(X). The map is constructed in such a way that if G ∼= Z/pk the map of theories
on a point is the global sections of the map on pk -torsion Ct⊗(G0[pk]⊕(Z/pk)n−t) −→
G[pk].

The map ΦG can be split into two parts, a topological part and an algebraic part. We
will begin by describing the topological part. It is topological because it is induced
by a map of topological spaces. After some preliminary discussion on the Borel
construction and transport categories we will describe the map of topological spaces.

3.1 The Topological Part

Let G be a finite group and X a left G-space. Associated to X as a topological space
is a category that has objects the points of X and only the identity morphisms (we
remember the topology on the set of objects). We will abuse notation and use the
symbol X for the category and for the topological space. Including the action of G on
X gives the transport category of X : TX . It is the category that has objects the points
of X and a morphism g : x1 −→ x2 when gx1 = x2 . This process associates to a group
action on a topological space a category object in topological spaces.

Let EG be the category with objects the elements of G and a unique isomorphism
between any two objects representing left multiplication in G. The geometric realiza-
tion of the nerve of this groupoid is a model for the classical space EG, a contractible
space with a free G-action. We will represent a morphism in EG as g1

k−→ g2 , where
kg1 = g2 . Note that this notation is overdetermined because k = g2g−1

1 . For this
reason we will sometimes just write g1 −→ g2 for the morphism.

The category EG is monoidal with multiplication m : EG × EG −→ EG using the
group multiplication for objects and sending unique morphisms to unique morphisms.
Explicitly:

m : (g1, h1) −→ (g2, h2) 7→ g1h1 −→ g2h2.
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The monoidal structure induces left and right G actions on the category EG. Let
g1 −→ g2 be a morphism in EG. Then for g ∈ G, the action is given by g · (g1 −→
g2) = gg1 −→ gg2 and (g1 −→ g2) · g = (g1g −→ g2g).

Proposition 3.2 As categories, EG×G X ∼= TX where the left G-action on the objects
of X is the G-action on the points of X . The geometric realization of the nerve of
either of these categories is a model for the classical Borel construction.

Proof We view EG×G X as a quotient of the product category (in fact a coequalizer).
We have

(g1, x)
(k,idx)−→ (g2, x) = (e, g1x)

(k,idx)−→ (e, g2x) 7→ (g1x k−→ g2x) ∈ Mor(TX)

which is clearly an isomorphism.

The space EG×G X has a left action by G induced by the left action of G on EG. This
action can be uniquely extended to a left action of EG as a monoidal category. This
leads to

Proposition 3.3 There is an isomorphism of categories EG×EG(EG×GX) ∼= EG×GX .

Proof Since EG acts on (EG×GX) through the action on EG we have the isomorphism

EG×EG (EG×G X) ∼= (EG×EG EG)×G X.

Now the proposition follows from the fact that

EG×EG EG ∼= EG.

We provide some explicit formulas. We will view EG×G X as TX . The isomorphism
in the proposition takes objects (g, x) = (e, gx) to gx . On morphisms

((g1, x1)
(k,h)−→ (g2, x2)) = ((e, g1x1)

(1,g2hg−1
1 )

−→ (e, g2x2)) 7→ (g1x1
g2hg−1

1−→ g2x2).

Let X be a finite G-space. Fix a k ≥ 0 so that every map α : Zn−t
p → G factors

through Λk = (Z/pk)n−t . Define

Fixn−t(X) =
∐

α∈hom(Zn−t
p ,G)

Ximα.

Lemma 3.4 The space Fixn−t(X) is a G-space.
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Proof Let x ∈ Xim(α) then for g ∈ G, gx ∈ Xim(gαg−1) .

Consider the inclusion
Ximα ↪→ X.

Using α we may define

EΛk ×Λk Ximα → EG×G X.

As the action of Λk on Ximα through G is trivial, EΛk×Λk Ximα ∼= BΛk×Ximα . This
provides us with a map

v : BΛk × Fixn−t(X) ∼=
∐

α∈hom(Zn−t
p ,G)

BΛk × Ximα → EG×G X.

The space ∐
α∈hom(Zn−t

p ,G)

BΛk × Ximα

is a G-space with the action of G induced by the action on Fixn−tX together with the
trivial action on BΛk . With this action the G-space is G-homeomorphic to BΛk ×
Fixn−tX .

Lemma 3.5 With the G-action on BΛk × Fixn−tX described above and the G-action
on EG×G X from the left action of G on EG, the map v is a G-map.

Proof Let l ∈ Λk . The following diagram commmutes:

(e l−→ e, x ∈ Ximα) v //

g
��

(e
α(l)−→ α(l), x ∈ X)

g
��

(e l−→ e, gx ∈ Xim gαg−1
) v // (g

gα(l)g−1

−→ gα(l), x ∈ X).

Proposition 3.6 The map

BΛk × Fixn−t(X)→ EG×G X

extends to a map
EG×G (BΛk × Fixn−t(X))→ EG×G X.
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Proof We will use the categorical formulation developed above. Applying the functor
EG×G (−) gives the map

EG×G (BΛk × Fixn−t(X))→ EG×G (EG×G X).

Now the inclusion G ↪→ EG induces

EG×G (EG×G X) −→ EG×EG (EG×G X) ' EG×G X.

The composite of the two maps is the required extension. Explicitly:

((g1, e)
(k,a)−→ (g2, e), x ∈ Ximα) 7→ (g1

g2α(a)g−1
1−→ g2α(a), x ∈ X).

We can do some explicit computations of this map that will be useful later. Let X = ∗
and G be a finite abelian group. Then we have that EG×G X is BG and

EG×G

( ∐
α∈hom(Zn−t

p ,G)

BΛk × Ximα
)
∼=

∐
α∈hom(Zn−t

p ,G)

BG× BΛk.

For a given α we can compute explicitly the map defined in Prop 3.6.

Corollary 3.7 Let X = ∗, G be an abelian group, and fix a map α : Λk −→ G.
Define +α : Λk × G −→ G to be the addition in G through α . Then the map of the
previous proposition on the α component

BΛk × BG −→ BG

is just B+α .

Proof Under the isomorphism BG× BΛk ∼= EG×G BΛk

(e, e)
(g,a)−→ (e, e) 7→ (e, e)

(g,a)−→ (g, e).

Prop 3.6 implies that this maps to

g + α(a).

Next we compute the map with X = G/H for H an abelian subgroup of a finite group
G. These computations will be used in our discussion of complex oriented descent.

When the notation Fixn−t(X) may be unclear we will use FixG
n−t(X) to clarify that we

are using X as a G-space. We begin by analyzing Fixn−t(G/H) as a G-set.
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Proposition 3.8 For H ⊆ G abelian, EG×G FixG
n−t(G/H) ' EH ×H FixH

n−t(∗).

Proof We will produce a map of groupoids that is essentially surjective and fully
faithful. The groupoid EG×G FixG

n−t(G/H) has objects the elements of FixG
n−t(G/H)

and morphisms coming from the action of G. The groupoid EH ×H FixH
n−t(∗) has

objects the elements of FixH
n−t(∗) and morphisms from the action of H .

Fix an α : Zn−t
p −→ G. For (G/H)imα to be non-empty we must have that imα ⊆

g−1Hg for some g ∈ G. Why? Let a ∈ imα and assume that gH is fixed by a, then
agH = gH so g−1ag ∈ H . Thus for gH to be fixed by all a ∈ imα , imα must be
contained in g−1Hg.

Every object in FixG
n−t(G/H) is isomorphic to one of the form eH . Indeed, let

gH ∈ (G/H)imα then g−1gH = eH ∈ (G/H)g−1 imαg . The only objects of the form
eH come from maps α such that imα is contained in H . We have one connected
component of the groupoid FixG

n−t(G/H) for every α : Zn−t
p −→ H .

Now to determine the groupoid up to equivalence it suffices to work out the automor-
phism group of eH ∈ (G/H)imα . Clearly the only possibilities for g ∈ G that fix eH are
the g ∈ H . It turns out that all of these fix eH . For if g ∈ H , geH ∈ (G/H)g imαg−1

, but
since H is abelian this is just (G/H)imα . So Aut(eH) ∼= H for any eH ∈ FixG

n−t(G/H).

The equivalence is now clear. We can, for example, send ∗ ∈ ∗imα to eH ∈ (G/H)imα

for the same α as imα ∈ H .

Proposition 3.9 For H ⊆ G abelian the following diagram commutes:

EH ×H BΛk × FixH
n−t(∗) //

'
��

EH ×H ∗

'
��

EG×G BΛk × FixG
n−t(G/H) // EG×G G/H

Proof We will represent a morphism in EH×H BΛk×FixH
n−t(∗) as a pair ((h1, e)

(h,z)−→
(h2, e), ∗ ∈ ∗imα). Checking commutativity on morphisms suffices (checking on
identity morphisms checks it on objects). Fix an α as above. We have the following
diagram morphism-wise:

((h1, e)
(h,z)−→ (h2, e), ∗ ∈ ∗imα) //

��

(h1
h2α(z)h−1

1−→ h2α(z), ∗)

��

((h1, e)
(h,z)−→ (h2, e), eH ∈ (G/H)imα) // (h1

h2α(z)h−1
1−→ h2α(z), eH ∈ (G/H)).
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The map BΛk × EG×G Fixn−t(X) ' EG×G
∐

BΛk × Ximα → EG×G X is the map
of spaces that is used to define the first part of the character map. Applying En we get

E∗n(EG×G X) −→ E∗n(BΛk × EG×G Fixn−t(X)).

3.10 The Algebraic Part

The algebraic part of the character map begins with the codomain above. The descrip-
tion of this part of the character map is much simpler. However, we must begin with a
word on gradings.

Until now we have done everything in the ungraded case. This is somewhat more
familiar and it is a bit easier to think about the algebraic geometry in the ungraded
situation. This turns out to be acceptable because En and LK(t)En are even periodic
theories. We need two facts to continue.

Proposition 3.11 Let C∗t be the graded ring with Ct in even dimensions and the
obvious multiplication. Then the fact that the ring extension E0

n −→ Ct is flat implies
that the graded ring extension E∗n −→ C∗t is flat.

Proof There is a pushout of graded rings

E0
n

//

��

Ct

��
E∗n // C∗t ,

where E0
n and Ct are taken to be trivially graded. As flatness is preserved under

pushouts the proposition follows.

Proposition 3.12 The ring E∗n(BΛk) is even periodic.

Proof This is because E∗n(BΛk) is a free E∗n -module with generators in degree 0 [9].
Even more, the function spectrum EBΛk

n is a free En -module as a spectrum.
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This is necessary to know because we will lift the map E0
n(BΛk) −→ Ct to a map

of graded rings E∗n(BΛk) −→ C∗t . From now on we will use the notation Ct for the
ungraded ring, C∗t for the graded ring, and C∗t (−) for the cohomology theory defined
by

C∗t (X) = Ct ⊗Lt LK(t)E∗n(X) ∼= C∗t ⊗LK(t)E∗n LK(t)E∗n(X).

We return to the character map. A Künneth isomorphism available in this situation
([9], Corollary 5.10) gives

E∗n(BΛk × EG×G Fixn−t(X)) ∼= E∗n(BΛk)⊗E∗n E∗n(EG×G Fixn−t(X))

From Section 2.8, we have the maps

ik : E∗n(BΛk) −→ Lt ⊗E0
n

E∗n(BΛk) −→ C∗t .

Also there is a map of cohomology theories E∗n(−) −→ C∗t (−) coming from the
canonical map En −→ LK(t)En and base extension and using the flatness of Ct over Lt .
Together these induce

E∗n(BΛk)⊗E∗n E∗n(EG×G Fixn−t(X)) −→ C∗t (EG×G Fixn−t(X)).

Precomposing with the topological map from the previous section we get the character
map:

ΦG : E∗n(EG×G X) −→ C∗t (EG×G Fixn−t(X)).

It is a result of Kuhn’s in [12] that the codomain is in fact an equivariant cohomology
theory on finite G-spaces. Several things must be proved to verify the claims in the
statement of Theorem 1.

Recall that Λk is defined so that all maps Zn−t
p −→ G factor through Λk . First we

show that this map does not depend on k .

Proposition 3.13 The character map does not depend on the choice of k in Λk .

Proof Let j > k and let s = ρk+1 ◦ . . . ◦ ρj where ρi is the fixed epimorphism from
Section 2.8. We will use this to produce an isomorphism between the character maps
depending on j and k . Precomposition with s provides an isomorphism hom(Λk,G) ∼=
hom(Λj,G). We can use s to create a homeomorphism

EG×G

( ∐
α∈hom(Λk,G)

Ximα
)
∼= EG×G

( ∐
α∈hom(Λj,G)

Ximα
)
.
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We will abuse notation and refer to each of these spaces as Fixn−t(X) and the map
between them as the identity map Id. We begin by noting that the following two
diagrams commute.

BΛk × EG×G Fixn−t(X)

uu

E∗n(BΛk)

E∗n (Bs)

��

ik

##
EG×G X Ct

BΛj × EG×G Fixn−t(X)

Bs×Id

OO

ii

E∗n(BΛj)
ij

;;

where the diagonal arrows in the left hand diagram come from the topological part of
the character map and the diagonal arrows in the right hand diagram come from the
definition of Ct . The right hand diagram commutes by definition.

Putting these diagrams together gives the commutative diagram

E∗n(BΛk)⊗E∗n E∗n(EG×G Fixn−t(X))

++

��

E∗n(EG×G X)

44

**

C∗t (EG×G Fixn−t(X))

E∗n(BΛj)⊗E∗n E∗n(EG×G Fixn−t(X))

33

that shows the map is independent of k .

Proposition 3.14 For G ∼= Z/pk and X = ∗, the codomain of the character map is
the global sections of Ct ⊗G[pk] ∼= Ct ⊗ (G0[pk]⊕ Λ∗k ).

Proof Let G ∼= Z/pk and X = ∗, as G is abelian it acts on Fixn−t(X) component-wise.
As X = ∗,

EG×G Fixn−t(X) = EG×G

( ∐
α∈hom(Zn−t

p ,G)

∗imα
)

∼=
∐

hom(Zn−t
p ,G)

BG.
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Applying cohomology and using βk ∈ (Z/pk)∗ = G∗ to identify Hom(Zn−t
p ,G) and

Λ∗k gives

C0
t

( ∐
hom(Zn−t

p ,G)

BG
)
∼=

∏
hom(Zn−t

p ,G)

C0
t (BG)

∼=
∏
Λ∗k

C0
t (BG).

The spectrum of this ring is precisely G0[pk]⊕ Λ∗k .

The next step is to compute the character map on cyclic p-groups. We begin by giving
an explicit description, with the coordinate, of the global sections of the canonical map
Ct ⊗ (G0[pk] ⊕ Λ∗k ) −→ GEn[pk]. We describe the map from each summand of the
domain separately.

The global sections of the map Ct ⊗G0[pk] −→ GEn[pk] are clearly given by

E0
n[[x]]/([pk](x)) x 7→x−→ Ct[[x]]/([pk](x)).

Next we analyze the other summand. Consider the canonical map ψ : Λ∗k −→ GEn[pk],
which is the composition

Λ∗k −→ Ct ⊗GEn[pk] −→ GEn[pk].

The global sections of ψ are easy to describe in terms of the coordinate. Recall that

Lt ⊗E0
n

E0
n(BΛk) ∼= Lt ⊗E0

n
E0

n[[x1, . . . , xn−t]]/([pk](x1), . . . , [pk](xn−t))

and that there is a canonical map

ik : Lt ⊗E0
n

E0
n(BΛk) −→ Ct.

Using the notation of Section 2.8, let l = c1 · βk
1 + . . .+ cn−t · βk

n−t ∈ Λ∗k . The global
sections of the restriction of ψ to l are the map

E0
n[[x]]/([pk](x)) −→ Ct,

which sends
x 7→ ik([c1](x1) +GEn

. . .+GEn
[cn−t](xn−t)).

In order to ease the notation, define

ψx(l) = ik([c1](x1) +GEn
. . .+GEn

[cn−t](xn−t)).

Putting these maps together for all l ∈ Λ∗k gives

E0
n[[x]]/([pk](x)) −→ Ct[[x]]/([pk](x))⊗Ct

(∏
Λ∗k

Ct
) ∼= ∏

Λ∗k

Ct[[x]]/([pk](x)),
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which maps
x 7→ x +GEn

(ψx(l))l∈Λ∗k
7→ (x +GEn

ψx(l))l∈Λ∗k
.

Proposition 3.15 For G ∼= Z/pk and X = ∗, the character map is the global sections
of G0[pk]⊕ Λ∗k −→ GEn[pk] described above.

Proof Fix an α : Λk −→ G. Postcomposing with our fixed generator of G∗ =

(Z/pk)∗ we get an element c1 ·βk
1 + . . .+cn−t ·βk

n−t ∈ Λ∗k . By Prop 3.7 the topological

part of the character map is induced by B(−) of the addition map Λk × G +α−→ G.
Applying E0

n to B+α gives

E0
n[[x]]/([pk](x)) −→ E0

n[[x1, . . . , xn−t]]/([pk](x1), . . . , [pk](xn−t))⊗E0
n

E0
n[[x]]/([pk](x)),

the map sending

x 7→ [c1](x1) +GEn
. . .+GEn

[cn−t](xn−t) +GEn
x.

This maps via the algebraic part of the character map,

E0
n[[x1, . . . , xn−t]]/([pk](x1), . . . , [pk](xn−t))⊗E0

n
E0

n[[x]]/([pk](x)) −→ Ct[[x]]/([pk](x)),

to (x +GEn
ψx(α)), where ψx is as above. Putting these together for all α gives a map

E0
n[[x]]/([pk](x)) −→

∏
Λ∗k

Ct[[x]]/([pk](x)).

This is precisely the map constructed just prior to the proposition.

3.16 The Isomorphism

We prove that the map of cohomology theories defined above

ΦG : E∗n(EG×G X) −→ C∗t (EG×G Fixn−t(X)).

is in fact an isomorphism when the domain is tensored up to Ct . We follow the steps
outlined in [9] with some added complications.

Given a finite G-CW complex X , let G ↪→ U(m) be a faithful complex representation
of G. Let T be a maximal torus in U(m). Then F = U(m)/T is a finite G-space with
abelian stabilizers. This means that it has fixed points for every abelian subgroup of G
but no fixed points for non-abelian subgroups of G.

The isomorphism is proved by reducing to the case when X is a point and G is abelian.
We first show that the cohomology of X is determined by the cohomology of the spaces
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X × F×h . Thus we can reduce to proving the isomorphism for spaces with abelian
stabilizers. Using Mayer-Vietoris for the cohomology theories we can then reduce to
spaces of the form G/H × Dl ' G/H where H is abelian. Then the fact that

EG×G (G/H) ' BH

and Prop 3.8 imply that we only need to check the isomorphism on finite abelian
groups. This will follow from our previous work.

We begin by proving the descent property for finite G-CW complexes. Thus we assume
that the map is an isomorphism for spaces with abelian stabilizers and show that this
implies it is an isomorphism for all finite G-spaces.

Proposition 3.17 The space F is a space with abelian stabilizers.

Proof Let A ⊆ G be an abelian subgroup. Then under the faithful representation
above A ⊂ uTu−1 for some u ∈ U(m). Thus for a ∈ A, a = utu−1 for some t ∈ T
and now it is clear that A fixes the coset uT .

On the other hand, if H ⊆ G is nonabelian then it cannot be contained inside a maximal
torus because the representation is faithful. Therefore it will not fix any coset of the
form uT with u ∈ U(m).

Proposition 3.18 As F is a space with abelian stabilizers the realization of the sim-
plicial space where the arrows are just the projections

EF =
∣∣∣F F × Foo
oo

F × F × F . . .
∣∣∣

oo
oo
oo

is a space such that for H ⊆ G

EFH '
{
∅ if H not abelian
∗ if H is abelian

Proof Because realization commutes with finite limits we just need to check that for
F a non-empty space, EF is contractible. It is well known that in this situation there are
backward and forward contracting homotopies to a point (see [6], Example 3.14).

Now EG×G X ' EG×G (X × EF) and exchanging homotopy colimits gives

EG×G X '
∣∣∣EG×G (X × F) EG×G (X × F × F)oo

oo
. . .
∣∣∣

oo
oo
oo

It is important to know that Fixn−t(−) preserves realizations.
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Proposition 3.19 The functor Fixn−t(−) preserves realizations. That is, given a
simplicial G-space X• , Fixn−t(|X•|) ' |Fixn−t(X•)|.

Proof Recall that for a G-space X , Fixn−t(X) =
∐

α∈hom(Zn−t
p ,G)

Ximα .

Also recall that geometric realization as a functor from simplicial G-spaces to G-spaces
is a colimit (in fact a coend), it commutes with fixed points for finite group actions (see
[8], Chapter 3 or [14], Chapter 11), and the following diagram commutes:

G-Spaces∆op | | //

��

G-Spaces

��
Spaces∆op | | // Spaces

where the vertical arrows are the forgetful functor. Thus it suffices to check that
Fixn−t(−) commutes with the realization of simplicial spaces as we already know that
it lands in G-spaces.

As colimits commute with colimits we only need to check the fixed points.

We will use the Bousfield-Kan spectral sequence. For a cosimplicial spectrum S• it is
a spectral sequence

Es,t
2 = πsπtS• ⇒ πt−s Tot S•

As Σ∞+ : Top −→ Spectra is a left adjoint it commutes with colimits. It is also
strong monoidal, taking products to smash products. The facts together imply that
it preserves realizations. Let E be a cohomology theory, then hom(|Σ∞+ X•|,E) ∼=
Tot hom(Σ∞+ X•,E), the totalization of the cosimplicial spectrum. The Bousfield-Kan
spectral sequence begins with the homotopy of the cosimplicial spectrum hom(Σ∞+ X•,E)
and abuts to the homotopy of Tot hom(Σ∞+ X•,E).

This applies to our situation. We want to resolve

C∗t (EG×G Fixn−t(X)) ∼= π−∗ hom(Σ∞+ EG×G Fixn−t(X),Ct)
∼= π−∗ hom(Σ∞+ EG×G Fixn−t(|X × F•|),Ct)
∼= π−∗ hom(|Σ∞+ EG×G Fixn−t(X × F•)|,Ct)
∼= π−∗ Tot hom(Σ∞+ EG×G Fixn−t(X × F•),Ct).

It follows from Prop 2.4 and 2.6 in [9] that E∗n(EG×G (X×F×h)) is a finitely generated
free E∗n(EG×G X)-module for all h. From [9] Propositions 2.4 - 2.6 we have that

E∗n(EG×G (X × F × F)) ∼= E∗n(EG×G (X × F)×(EG×GX) EG×G (X × F))
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and this is isomorphic to

E∗n(EG×G (X × F))⊗E∗n (EG×GX) E∗n(EG×G (X × F)).

We see that the cosimplicial graded E∗n -module

E∗n(EG×G (X × F))
//
// E∗n(EG×G (X × F × F))

//
//
//
. . .

is in fact the Amitsur complex of the faithfully flat (even free) map E∗n(EG×G X) −→
E∗n(EG ×G (X × F)) induced by the projection. This implies that its homology is
concentrated in the zeroeth degree and isomorphic to E∗n(EG ×G X). In other words
the associated chain complex is exact everywhere but at the first arrow.

The chain complex is the E1 term for the Bousfield-Kan spectral sequence and we have
shown that it collapses. Tensoring with Ct retains this exactness as Ct is flat over E0

n .
Using our assumption regarding spaces with abelian stabilizers we now have a map of
E1 -terms that is an isomorphism

Ct ⊗E0
n

E∗n(EG×G X × F)
//
//

∼=
��

Ct ⊗E0
n

E∗n(EG×G X × F × F)

∼=
��

//
//
//
. . .

C∗t (EG×G Fixn−t(X × F))
//
// C∗t (EG×G Fixn−t(X × F × F))

//
//
//
. . ..

As the homology of these complexes is the E2 = E∞ page of the spectral sequence
and the spectral sequence does converge ([3], IX.5) to an associated graded (in this
case with one term), this implies that Ct ⊗E0

n
E∗n(EG×G X) and C∗t (EG×G Fixn−t(X))

are isomorphic. Thus we have complex oriented descent.

We are reduced to proving the isomorphism for spaces with abelian stabilizers. Using
an equivariant cell decomposition Mayer-Vietoris reduces this to spaces of the form
G/H×Dn where H is abelian and Dn is the n-disk. Now homotopy invariance reduces
this to spaces of the form G/H with H abelian.

Proposition 3.20 The induction property holds for G/H where H ⊆ G is abelian.
That is the following diagram commutes:

Ct ⊗E0
n

E∗n(EG×G G/H)
Ct⊗ΦG//

∼=
��

C∗t (EG×G FixG
n−t(G/H))

∼=
��

Ct ⊗E0
n

E∗n(EH ×H ∗)
Ct⊗ΦH // C∗t (EH ×H FixH

n−t(∗))
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Proof This follows from Prop 3.9 and Prop 3.13.

We are left having to show it is an isomorphism for finite abelian groups, but we can
use the Künneth isomorphism to reduce to cyclic p-groups and the isomorphism there
has already been proved in Prop 3.15.

We conclude by working an example that highlights the difference between the tran-
schromatic character maps in the case when t > 0 and the traditional case when
t = 0.

Example 3.21 We calculate the codomain of the character map when X = ∗ and for
arbitrary finite groups G. When X = ∗, Fixn−t(∗) is the G-set

{(g1, . . . , gn−t)|[gi, gj] = e, gpn

i = e for n >> 0}

with action by coordinate-wise conjugation. Thus

EG×G Fixn−t(∗) '
∐

[g1,...,gn−t]

BC(g1, . . . , gn−t),

the disjoint union over “generalized conjugacy classes” of the classifying space of the
centralizer of the (n − t)-tuple. When t = 0, p is invertible in C0 and C∗0(BG) ∼= C∗0
so the codomain is class functions with values in C∗0 on the set of (n− t)-tuples. When
t > 0 this is not the case:

C∗t (EG×G Fixn−t(∗)) ∼=
∏

[g1,...,gn−t]

C∗t (BC(g1, . . . , gn−t)).

References

[1] M Ando, Isogenies of formal group laws and power operations in the cohomology
theories En , Duke Math. J. 79 (1995) 423–485

[2] M F Atiyah, Characters and cohomology of finite groups., Publ. Math., Inst. Hautes
Etud. Sci. 9 (1961) 247–288

[3] A K Bousfield, D M Kan, Homotopy limits, completions and localizations, Lecture
Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin (1972)

[4] M Demazure, Lectures on p-divisible groups, volume 302 of Lecture Notes in Mathe-
matics, Springer-Verlag, Berlin (1986)Reprint of the 1972 original

[5] M Demazure, P Gabriel, Groupes algébriques. Tome I: Géométrie algébrique,
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