Math 213 Exam II Review

October 14, 2018

Functions of two variables: graphs, contour plots, limits, continuity

1. Find $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4}+x^{2} y^{2}}{x^{3} y+y^{4}}$ or show that it does not exist.
2. Find the domain of the function $f(x, y)=\frac{\ln \left(16-x^{2}-y^{2}\right)}{x^{2}+y^{2}-1}$.
3. At what points is the function

$$
f(x, y)= \begin{cases}\frac{\sin \left(x^{2}+y^{2}\right)}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \\ 1, & (x, y)=(0,0)\end{cases}
$$

continuous?

Partial Derivatives, Chain Rule

1. Use implicit differentiation to find $\partial z / \partial x$ and $\partial z / \partial y$ if $e^{x y z}=y z$
2. Show that the function $u(x, t)=t^{-1 / 2} e^{-x^{2} / t}$ solves the heat equation

$$
u_{t}(x, t)=u_{x x}(x, t)
$$

for $x \in \mathbb{R}$ and $t>0$.
3. Find the critical points of the function $f(x, y)=x^{4}-4 x^{3}+y^{2}-2 y$.

Tangent Planes and Linear Approximation

1. Find the equation of the tangent plane to the graph of

$$
\frac{x^{2}}{4}+\frac{y^{2}}{9}+\frac{z^{2}}{4}=3
$$

at the point $(2,3,2)$.
2. Find the linear approximation to $f(x, y)=x e^{y}$ at $(1,0)$. Use it to estimate $f(0.9,-0.1)$.

Gradient, Directional Derivatives

1. Find the maximum rate of change of $f(x, y)=x^{2}-y^{2}$ at the point $(3,2)$ and find the direction of the maximum rate of change.
2. Find the equation of the normal line to level set of

$$
f(x, y, z)=\frac{x^{2}}{4}+\frac{y^{2}}{9}+\frac{z^{2}}{4}
$$

at the point $(2,3,2)$.

Maximum and Minimum Values

1. Find the critical points of $f(x, y)=x^{3}-6 x y+8 y^{3}$ and classify them as maxima, minima, or saddle points.
2. Find the absolute maximum and minimum values of $f(x, y)=4 x y^{2}-$ $x^{2} y^{2}-x y^{3}$ on the closed triangular region D in the $x y$-plane with vertices $(0,0),(0,6)$, and $(6,0)$.
3. Find the points on the surface $x y^{2} z^{3}=2$ that are closest to the origin.

Lagrange Multiplier Method

1. Find the maximum and minimum values of $f(x, y)=x^{2} y$ subject to the constraint $x^{2}+y^{2}=1$
2. Find the maximum and minimum values of $f(x, y, z)=x y z$ subject to the constraint $x^{2}+y^{2}+z^{2}=3$.
