Math 213 - Motion in Space

Peter A. Perry
University of Kentucky

September 17, 2018

Homework

- Your first exam is Wednesday at 5:00 PM Know your room in CB!
- Homework A5 is due Wednesday night
- You should re-read section 13.4 to prepare for tomorrow's recitation
- You should begin work on Stewart problems 3, 7, $9,11,23,25,37,39,41$ from section 13.4
- You should begin reviewing for your exam!

Unit I: Geometry and Motion in Space

Lecture 1	Three-Dimensional Coordinate Systems
Lecture 2	Vectors
Lecture 3	The Dot Product
Lecture 4	The Cross Product
Lecture 5	Equations of Lines and Planes, Part I
Lecture 6	Equations of Lines and Planes, Part II
Lecture 7	Cylinders and Quadric Surfaces
Lecture 8	Vector Functions and Space Curves
Lecture 9	Derivatives and Integrals of Vector Functions
Lecture 10	Arc Length and Curvature
Lecture 11	Motion in Space: Velocity and Acceleration
Lecture 12	Exam 1 Review

Goals of the Day

- Know how to compute velocity and acceleration
- Know how to solve projectile problems
- Understand tangential and normal components of acceleration
- Understand Kepler's Laws of Planetary Motion

Velocity and Acceleration

If $\mathbf{r}(t)$ is the space curve of a moving body and if t is time:

- $\mathbf{r}^{\prime}(t)$ is $\mathbf{v}(t)$, the velocity of the moving body
- $\left|\mathbf{r}^{\prime}(t)\right|$ is the speed of the moving body
- $\mathbf{r}^{\prime \prime}(t)$ is $\mathbf{a}(t)$, the acceleration of the moving body

1. (Projectile motion) Suppose that $\mathbf{r}(t)=\left\langle 32 t, 32 t-16 t^{2}\right\rangle$. Find the velocity and acceleration
2. (Circular motion) Suppose that $\mathbf{r}(t)=\langle R \cos (2 \pi t / T), R \sin (2 \pi t / T)\rangle$. Find the velocity and acceleration.

Velocity and Acceleration

$$
\mathbf{r}(t)=\left\langle 32 t, 32 t-16 t^{2}\right\rangle
$$

What's the projectile's acceleration?

$\mathbf{r}(t)=\langle R \cos (2 \pi t / T), R \sin (2 \pi t / T)\rangle$

How long does one orbit take?
Which way does the velocity vector point?
Which way does the acceleration vector point?

Interlude - Newton's Laws of Motion

1. A body will remain at rest or in motion in a straight line unless acted on by an external force.
2. The applied force \mathbf{F} is equal to the change of momentum $m \mathbf{v}$ per unit time
3. For every action there is an equal and opposite reaction

Projectile Motion

For constant mass, Newton's second law implies

$$
\mathbf{F}=m \mathbf{a}
$$

(Warning: Do not use for rockets!)
At the surface of the earth, a mass m is subject to a gravitational force $-m g \mathbf{j}$

From Newton's second law we then get ma=-mgj or

$$
\mathbf{r}^{\prime \prime}(t)=\mathbf{a}=-g \mathbf{j}
$$

where $g=32 \mathrm{ft} / \mathrm{sec}^{2}=9.8 \mathrm{~m} / \mathrm{sec}^{2}$.
If we know the initial conditions for a projectile (its position and velocity at time zero), we can integrate this equation to find the motion of the projectile.

Projectile Motion

A ball is thrown at an angle of 45° to the ground. If the ball lands 90 m away, what was the initial speed of the ball?

$$
\begin{aligned}
\mathbf{r}^{\prime \prime}(t) & =-9.8 \mathbf{k} \\
\mathbf{r}^{\prime}(0) & =\mathbf{v}(0)=v_{0} \cos \left(45^{\circ}\right) \mathbf{i}+v_{0} \sin \left(45^{\circ}\right) \mathbf{j} \\
\mathbf{r}(0) & =0 \mathbf{i}+0 \mathbf{j}
\end{aligned}
$$

Now integrate:

$$
\begin{aligned}
\mathbf{v}(t) & =\mathbf{v}(0)+\int_{0}^{t} \mathbf{a}(s) d s \\
& =v_{0}(\sqrt{2} / 2) \mathbf{i}+\left(v_{0}(\sqrt{2} / 2)-9.8 t\right) \mathbf{j} \\
\mathbf{r}(t) & =\mathbf{r}(0)+\left(v_{0}(\sqrt{2} / 2) t\right) \mathbf{i}+\left(v_{0}(\sqrt{2} / 2) t-(9.8 / 2) t^{2}\right) \mathbf{j}
\end{aligned}
$$

Now what?

Components of Acceleration

Suppose $\mathbf{r}(t)$ is the path of a moving object.
Let's abbreviate $\mathbf{v}(t)=\mathbf{r}^{\prime}(t), v(t)=\left|\mathbf{r}^{\prime}(t)\right|$. Then

$$
\mathbf{v}(t)=v(t) \mathbf{T}(t)
$$

Recall that

$$
\kappa(t)=\frac{\left|\mathbf{T}^{\prime}(t)\right|}{v(t)}
$$

Components of Acceleration

Suppose $\mathbf{r}(t)$ is the path of a moving object.
Let's abbreviate $\mathbf{v}(t)=\mathbf{r}^{\prime}(t), v(t)=\left|\mathbf{r}^{\prime}(t)\right|$. Then

$$
\mathbf{v}(t)=v(t) \mathbf{T}(t)
$$

Recall that

$$
\kappa(t)=\frac{\left|\mathbf{T}^{\prime}(t)\right|}{v(t)}
$$

The acceleration of the object is

$$
\begin{aligned}
\mathbf{a}(t) & =\frac{d}{d t} v(t) \mathbf{T}(t) \\
& =v^{\prime}(t) \mathbf{T}(t)+v(t) \mathbf{T}^{\prime}(t) \\
& =v^{\prime}(t) \mathbf{T}(t)+v(t)\left|\mathbf{T}^{\prime}(t)\right| \mathbf{N}(t) \\
& =v^{\prime}(t) \mathbf{T}(t)+\kappa(t) v(t)^{2} \mathbf{N}(t)
\end{aligned}
$$

That is, roughly,

Components of Acceleration

$$
\mathbf{a}=v^{\prime} \mathbf{T}+\kappa v^{2} \mathbf{N}
$$

Find tangential and normal components of acceleration for the path

$$
\begin{aligned}
\mathbf{r}(t) & =\langle\cos t, \sin t, t\rangle \\
v(t) & =\sqrt{2} \\
\mathbf{T}(t) & =\frac{1}{\sqrt{2}}\langle-\sin t, \cos t, 1\rangle \\
\mathbf{N}(t) & =\langle-\cos (t),-\sin (t), 0\rangle \\
\kappa(t) & =1 / 4
\end{aligned}
$$

Kepler's Laws

1. A planet orbits around the sun in an elliptical orbit with the sun at one focus
2. The line joining the sun to the planet sweeps out equal areas in equal times
3. The square of the period T of a planet's orbit is proportion to the cube of the major axis a of the ellipse

In Newton's Principia Mathematica, Newton showed how to derive Kepler's laws from:

Newton's Second Law:

$$
\mathbf{F}=m \mathbf{a}
$$

Newton's Law of Gravitation: $\quad \mathbf{F}=-\frac{G M m}{r^{3}} \mathbf{r}$

Planetary Orbits are Planar

Consider the vector $\mathbf{L}(t)=\mathbf{r}(t) \times m \mathbf{v}(t)$. We'll show that this vector is constant for a planet moving around the sun, which implies that a planet's orbit lies on a plane.

$$
\begin{aligned}
\frac{d}{d t}(\mathbf{r} \times m \mathbf{v}) & =\mathbf{v} \times m \mathbf{v}+\mathbf{r} \times m \mathbf{a} \\
& =\mathbf{0}+\mathbf{r} \times\left(-\frac{G M m}{r^{3}} \mathbf{r}\right) \\
& =\mathbf{0}
\end{aligned}
$$

The constant vector \mathbf{L} defines a plane containing \mathbf{r} and \mathbf{v} since $\mathbf{h} \cdot \mathbf{r}=\mathbf{h} \cdot \mathbf{v}=0$
The quantity $\mathbf{L}=\mathbf{r} \times m \mathbf{v}$ is called angular momentum and is conserved for motion governed by a central force.

The Equal Areas Law

Recall $\mathbf{L}=\mathbf{r} \times m \mathbf{v}$ is conserved, and that the area swept out by a polar curve is $A=\frac{1}{2} \int_{a}^{b} r^{2} d \theta$

Introduce polar coordinates (r, θ) and let

$$
\begin{aligned}
\widehat{\mathbf{r}} & =\cos \theta \mathbf{i}+\sin \theta \mathbf{j} \\
\widehat{\boldsymbol{\theta}} & =-\sin \theta \mathbf{i}+\cos \theta \mathbf{j}
\end{aligned}
$$

Then

$$
\begin{aligned}
\mathbf{r} & =r \widehat{\mathbf{r}} \\
\mathbf{v} & =\dot{r} \widehat{\mathbf{r}}+r \frac{d}{d t}(\widehat{\mathbf{r}})=r \widehat{\mathbf{r}}+r \dot{\theta} \widehat{\boldsymbol{\theta}}
\end{aligned}
$$

so

$$
\mathbf{r} \times m \mathbf{v}=m(r \widehat{\mathbf{r}}) \times(\dot{r} \widehat{\mathbf{r}}+r \dot{\theta} \widehat{\boldsymbol{\theta}})=m r^{2} \dot{\theta}(\widehat{\mathbf{r}} \times \widehat{\boldsymbol{\theta}})
$$

Since \mathbf{L} is constant, so also $m r^{2} \dot{\theta}$ is constant

