Math 213 - Exam I Review

Peter A. Perry
University of Kentucky

September 19, 2018

Homework

- Your first exam is tonight - Know your room in CB!
- Homework A5 is due tonight
- You should finish reviewing for your exam!

Unit I: Geometry and Motion in Space

Lecture 1 Three-Dimensional Coordinate Systems
Lecture 2 Vectors
Lecture 3 The Dot Product
Lecture 4 The Cross Product
Lecture 5 Equations of Lines and Planes, Part I
Lecture 6 Equations of Lines and Planes, Part II
Lecture 7 Cylinders and Quadric Surfaces
Lecture 8 Vector Functions and Space Curves
Lecture 9 Derivatives and Integrals of Vector Functions
Lecture 10 Arc Length and Curvature
Lecture 11 Motion in Space: Velocity and Acceleration
Lecture 12 Exam 1 Review

Goals of the Day

- Learn how to ace Exam I

Dot Product, Cross Product, Triple Product

$$
\begin{aligned}
& \mathbf{a} \cdot \mathbf{b} \\
& a_{1} b_{1}+a_{2} b_{2}+a_{3} c_{3} \quad|\mathbf{a}||\mathbf{b}| \cos \theta \\
& \mathbf{a} \times \mathbf{b} \quad\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right| \quad|\mathbf{a} \times \mathbf{b}|=|\mathbf{a}||\mathbf{b}| \sin \theta \quad \text { Zero if } \mathbf{a}, \mathbf{b} \text { parallel } \\
& \mathbf{a} \cdot(\mathbf{b} \times \mathbf{c}) \quad\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right| \\
& \text { Zero if } \mathbf{a}, \mathbf{b} \text { orthogonal } \\
& \text { Zero if } \mathbf{a}, \mathbf{b}, \mathbf{c} \text { coplanar }
\end{aligned}
$$

$\mathbf{a} \times \mathbf{b}$ is area of a parallelogram spanned by \mathbf{a}, \mathbf{b}
$\mathbf{a} \cdot(\mathbf{b} \cdot \mathbf{c})$ is volume of parallelipiped spanned by $\mathbf{a}, \mathbf{b}, \mathbf{c}$
Component of \mathbf{b} in a direction: $\frac{\mathbf{b} \cdot \mathbf{a}}{|\mathbf{a}|}$
Vector projection of \mathbf{b} in a direction: $\frac{\mathbf{b} \cdot \mathbf{a}}{|\mathbf{a}|^{2}} \mathbf{a}$

Lines

If $\left(x_{0}, y_{0}, z_{0}\right)$ is a point on the line and $\mathbf{v}=\langle a, b, c\rangle$ points along the line:

Parametric equations: $x=x+0+a t, y=y_{0}+b t, z=z_{0}+c t$
Symmetric equations: $\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}$
Two lines $\mathbf{r}_{1}(s)=\left(x_{1}, y_{1}, z_{1}\right)+s \mathbf{v}_{1}$ and $\mathbf{r}_{2}(t)=\left(x_{2}, y_{2}, z_{2}\right)+t \mathbf{v}_{2}$ are:

- parallel if \mathbf{v}_{1} is parallel to \mathbf{v}_{2}
- intersecting if $\mathbf{r}_{1}(\boldsymbol{s})=\mathbf{r}_{2}(t)$ for some values of s and t
- skew if none of the above

Planes

If $\left(x_{0}, y_{0}, z_{0}\right)$ is a point on the plane and $\mathbf{n}=\langle a, b, c\rangle$ is a vector normal to the plane:

$$
a x+b y+c z=d
$$

where d is determined by substituting $(x, y, z)=\left(x_{0}, y_{0}, z_{0}\right)$ into the left-hand side

Two planes with normals \mathbf{n}_{1} and \mathbf{n}_{2} are:

- parallel if \mathbf{n}_{1} and \mathbf{n}_{2} are parallel
- intersecting if their normal vectors are not parallel. The vector $\mathbf{n}_{1} \times \mathbf{n}_{2}$ points along the line of intersection

Cylinders A cylinder consists of a curve translated along a line parallel to one of the $x-, y$, or z axes (the "missing variable"). Examples: $y^{2}+z^{2}=1$, $z=\sin (x)$

Quadric Surfaces

$$
\begin{array}{ll}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1 & \text { Ellipsoid } \\
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1 & \text { Hyperboloid (One Sheet) } \\
-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1 & \text { Hyperboloid (Two Sheets) } \\
\frac{z^{2}}{c^{2}}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} & \text { Cone } \\
\frac{z}{c}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} & \text { Elliptic paraboloid } \\
\frac{z}{c}=\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}} & \text { Hyperbolic paraboloid }
\end{array}
$$

You can determine the graph of a quadric surface by finding its traces in planes $x=k, y=k, z=k$

Vector Functions

The function $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle, a \leq t \leq b$ traces out a space curve C The tangent line to $\mathbf{r}(t)$ at $t=t_{0}$ is the line containing the point $\mathbf{r}\left(t_{0}\right)$ in the direction of $\mathbf{r}^{\prime}\left(t_{0}\right)$

The velocity of a space curve is $\mathbf{r}^{\prime}(t)$, and the speed is $\left|\mathbf{r}^{\prime}(t)\right|$
The unit tangent to $\mathbf{r}(t)$ is $\mathbf{T}(t)=\frac{\mathbf{r}^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|}$
The unit normal to \mathbf{r} is $\mathbf{N}(t)=\frac{\mathbf{T}^{\prime}(t)}{\left|\mathbf{T}^{\prime}(t)\right|}$
The arc length along C from $t=a$ to $t=b$ is $\int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| d t$
The arc length function for C is $s(t)=\int_{a}^{t}\left|\mathbf{r}^{\prime}(u)\right| d u$

Projectile Problems

For a projectile that starts at position \mathbf{r}_{0}, velocity $\mathbf{v}_{0}=\left\langle v_{x}, v_{y}\right\rangle$, we can find the motion by integrating

$$
\mathbf{a}(t)=-g \mathbf{j}
$$

to get

$$
\mathbf{v}(t)=v_{x} \mathbf{i}+\left(v_{y}-g t\right) \mathbf{j}
$$

and

$$
\mathbf{r}(t)=\mathbf{r}_{0}+\left(v_{x} t\right) \mathbf{i}+\left(v_{y} t-\frac{1}{2} g t^{2}\right) \mathbf{j}
$$

Old Exam Practice

We'll now switch to the document camera and work selected old exam problems!

