Math 213 - Exam I Review

Peter A. Perry

University of Kentucky

September 19, 2018

Homework

- Your first exam is tonight Know your room in CB!
- Homework A5 is due tonight
- You should finish reviewing for your exam!

Unit I: Geometry and Motion in Space

Lecture 1	Three-Dimensional Coordinate Systems
Lecture 2	Vectors
Lecture 3	The Dot Product
Lecture 4	The Cross Product
Lecture 5	Equations of Lines and Planes, Part I
Lecture 6	Equations of Lines and Planes, Part II
Lecture 7	Cylinders and Quadric Surfaces
Lecture 8	Vector Functions and Space Curves
Lecture 9	Derivatives and Integrals of Vector Functions
Lecture 10	Arc Length and Curvature
Lecture 11	Motion in Space: Velocity and Acceleration
Lecture 12	Exam 1 Review

Goals of the Day

Learn how to ace Exam I

Dot Product, Cross Product, Triple Product

$$a_1b_1 + a_2b_2 + a_3c_3 \quad |\mathbf{a}||\mathbf{b}|\cos\theta$$

$$\mathbf{a}||\mathbf{b}|\cos\theta$$

Zero if a, b orthogonal

$$\mathbf{a}\times\mathbf{b} \qquad \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} \qquad |\mathbf{a}\times\mathbf{b}| = |\mathbf{a}||\mathbf{b}|\sin\theta \quad \text{Zero if } \mathbf{a}, \, \mathbf{b} \text{ parallel}$$

$$|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}||\mathbf{b}|\sin\theta$$

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) \quad \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

Zero if a, b, c coplanar

 $\mathbf{a} \times \mathbf{b}$ is area of a parallelogram spanned by \mathbf{a} , \mathbf{b} $\mathbf{a} \cdot (\mathbf{b} \cdot \mathbf{c})$ is volume of parallelipiped spanned by \mathbf{a} , \mathbf{b} , \mathbf{c}

Component of **b** in **a** direction: $\frac{\mathbf{b} \cdot \mathbf{a}}{|\mathbf{a}|}$

Vector projection of **b** in **a** direction: $\frac{\mathbf{b} \cdot \mathbf{a}}{|\mathbf{a}|^2} \mathbf{a}$

Lines

If (x_0, y_0, z_0) is a point on the line and $\mathbf{v} = \langle a, b, c \rangle$ points along the line:

Parametric equations: x = x + 0 + at, $y = y_0 + bt$, $z = z_0 + ct$

Symmetric equations:
$$\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$$

Two lines $\mathbf{r}_1(s) = (x_1, y_1, z_1) + s\mathbf{v}_1$ and $\mathbf{r}_2(t) = (x_2, y_2, z_2) + t\mathbf{v}_2$ are:

- ullet parallel if ${f v}_1$ is parallel to ${f v}_2$
- intersecting if $\mathbf{r}_1(s) = \mathbf{r}_2(t)$ for some values of s and t
- skew if none of the above

Planes

If (x_0, y_0, z_0) is a point on the plane and $\mathbf{n} = \langle a, b, c \rangle$ is a vector normal to the plane:

$$ax + by + cz = d$$

where d is determined by substituting $(x,y,z)=(x_0,y_0,z_0)$ into the left-hand side

Two planes with normals \mathbf{n}_1 and \mathbf{n}_2 are:

- parallel if \mathbf{n}_1 and \mathbf{n}_2 are parallel
- intersecting if their normal vectors are not parallel. The vector ${\bf n}_1 \times {\bf n}_2$ points along the line of intersection

Cylinders A cylinder consists of a curve translated along a line parallel to one

of the x-, y, or z axes (the "missing variable"). Examples: $y^2+z^2=1$, $z=\sin(x)$

Quadric Surfaces

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
 Ellipsoid
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$
 Hyperboloid (One Sheet)
$$-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
 Hyperboloid (Two Sheets)
$$\frac{z^2}{c^2} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$
 Cone
$$\frac{z}{c} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$
 Elliptic paraboloid
$$\frac{z}{c} = \frac{x^2}{a^2} - \frac{y^2}{b^2}$$
 Hyperbolic paraboloid

You can determine the graph of a quadric surface by finding its *traces* in planes x = k, y = k, z = k

Vector Functions

The function $\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle$, $a \le t \le b$ traces out a space curve C

The tangent line to $\mathbf{r}(t)$ at $t=t_0$ is the line containing the point $\mathbf{r}(t_0)$ in the direction of $\mathbf{r}'(t_0)$

The *velocity* of a space curve is $\mathbf{r}'(t)$, and the *speed* is $|\mathbf{r}'(t)|$

The unit tangent to $\mathbf{r}(t)$ is $\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|}$

The unit normal to \mathbf{r} is $\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{|\mathbf{T}'(t)|}$

The arc length along C from t = a to t = b is $\int_a^b |\mathbf{r}'(t)| dt$

The arc length function for C is $s(t) = \int_a^t |\mathbf{r}'(u)| du$

Projectile Problems

For a projectile that starts at position \mathbf{r}_0 , velocity $\mathbf{v}_0 = \langle v_x, v_y \rangle$, we can find the motion by integrating

$$\mathbf{a}(t) = -g\mathbf{j}$$

to get

$$\mathbf{v}(t) = \mathbf{v}_{\mathsf{x}}\mathbf{i} + (\mathbf{v}_{\mathsf{y}} - \mathbf{g}t)\mathbf{j}$$

and

$$\mathbf{r}(t) = \mathbf{r}_0 + (v_x t)\mathbf{i} + \left(v_y t - \frac{1}{2}gt^2\right)\mathbf{j}$$

Old Exam Practice

We'll now switch to the document camera and work selected old exam problems!