◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Math 213 - Partial Derivatives

Peter A. Perry

University of Kentucky

September 26, 2018

Homework

- Re-read section 14.3
- Start working on practice problems in section 14.3, 15-31 (odd), 43, 47, 49, 51, 52, 53, 55, 63-69 (odd), 75, 77
- Be ready to work in recitation tomorrow on section 14.3
- Read section 14.4 for Wednesday's lecture

Unit II: Differential Calculus of Several Variables

- Lecture 13 Functions of Several Variables
- Lecture 14 Limits and Continuity
- Lecture 15 Partial Derivatives
- Lecture 16 Tangent Planes and Linear Approximation, I
- Lecture 17 Tangent Planes and Linear Approximation, II
- Lecture 18 The Chain Rule
- Lecture 19 Directional Derivatives and the Gradient
- Lecture 20 Maximum and Minimum Values, I
- Lecture 21 Maximum and Minimum Values, II
- Lecture 22 Lagrange Multipliers
- Lecture 23 Review for Exam 2

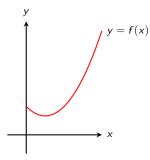
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Goals of the Day

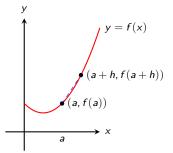
- Learn how to compute partial derivatives and know various different notations for them
- Understand the geometric interpretation of partial derivatives
- Know how to compute higher partial derivatives
- Understand their connection with partial differential equations

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Derivatives - One Variable



Derivatives - One Variable



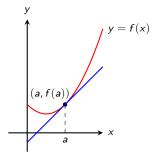
The derivative of f at a is the limit

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

◆□> ◆□> ◆注> ◆注> □注□

if it exists.

Derivatives - One Variable



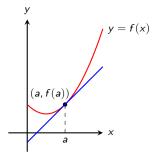
The derivative of f at a is the limit

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

if it exists.

f'(a) is the slope of the tangent line to the graph of f at the point (*a*, *f*(*a*)).

Derivatives - One Variable



The derivative of f at a is the limit

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

if it exists.

f'(a) is the slope of the tangent line to the graph of f at the point (a, f(a)).

f'(a) is also the instantaneous rate of change of y = f(x) at x = a

Partial Derivatives - Two Variables

A function of two variables has two very natural rates of change:

- The rate of change of z = f(x, y) with respect to x when y is fixed
- The rate of change of z = f(x, y) when respect to y when x is fixed

The first of these is called the *partial derivative of f with respect to x*, denoted $\partial f/\partial x$ or f_x

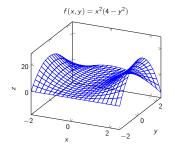
$$f_{\mathsf{X}}(\mathsf{a},\mathsf{b}) = \lim_{h \to 0} \frac{f(\mathsf{a}+\mathsf{h},\mathsf{b}) - f(\mathsf{a},\mathsf{b})}{h}$$

the second is called the *partial derivative of f with respect to y*, denoted $\partial f/\partial y$ or f_y

$$f_{y}(a,b) = \lim_{h \to 0} \frac{f(a,b+h) - f(a,b)}{h}$$

Geometric Interpretation

Given a function $f(x, y) \dots$



Ν

Geometric Interpretation

 $f(x,y) = x^2(4-y^2)$

2 _2

х

Given a function $f(x, y) \dots$

Compute $f_x(a, b)$ by setting y = b and varying x:

$$f_{x}(a,b) = \lim_{h \to 0} \frac{f(a+h,b) - f(a,b)}{h}$$

Geometric Interpretation

 $f(x,y) = x^2(4-y^2)$

Given a function $f(x, y) \dots$

Compute $f_x(a, b)$ by setting y = b and varying x:

$$f_{x}(a,b) = \lim_{h \to 0} \frac{f(a+h,b) - f(a,b)}{h}$$

Compute $f_y(a, b)$ by setting x = a and varying y:

$$f_{x}(a,b) = \lim_{h \to 0} \frac{f(a,b+h) - f(a,b)}{h}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Partial Derivatives

- To find f_x, regard y as a constant and differentiate f(x, y) with respect to x
- To find f_y, regard x as a constant and differentiate f(x, y) with respect to y

Find both partial derivatives of the following functions:

- 1. $f(x, y) = x^4 + 5xy^3$ 2. $f(x, t) = t^2 e^{-x}$
- 3. $g(u, v) = (u^2 + v^2)^3$ 4. $f(x, y) = \sin(xy)$

5.
$$f(George, Fran) = (George)^5 + (Fran)^3$$

More Partial Derivatives

Sometimes it's useful to remember that, to compute a partial derivative like $f_x(x, 1)$, you can set y = 1 before you start computing.

Find the following partial derivatives.

PDEs

Higher Partials

We can compute higher-order partial derivatives just by repeating operations. We'll find out what these partials actually mean later on!

Example Find the second partial derivatives of $f(x, y) = x^2 y^2$

$$\frac{\partial f}{\partial x} = f_x(x, y) = 2xy^2, \quad \frac{\partial f}{\partial y} = 2x^2y$$

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y^2} =$$

Notations:

$$\frac{\partial^2 f}{\partial y \partial x} = f_{xy} = (f_x)_y, \quad \frac{\partial^2 f}{\partial x \partial y} = f_{yx} = (f_y)_x$$

Clairaut's Theorem

Suppose f is defined on a disk D that contains the point (a, b). If the functions f_{XY} and f_{YX} are both continuous on D, then

$$f_{xy}(a, b) = f_{yx}(a, b)$$

Check Clairaut's theorem for the function $f(x, y) = x^3y^2 - \sin(xy)$

Implicit Differentiation

You can find partial derivatives by implicit differentiation.

- 1. Find $\partial z / \partial x$ and $\partial z / \partial y$ if $x^2 + y^2 + z^2 = 1$
- 2. Find $\partial z / \partial x$ and $\partial z / \partial y$ if $e^z = xyz$

PDEs

Partial Differential Equations

Partial Differential Equations describe many physical phenomena. The unknown function is a function of two or more variables.

The wave equation for u(x, t), a function which, for each t gives a 'snapshot' of a one-dimensional travelling wave:

$$\frac{\partial^2 u}{\partial t^2} = \frac{1}{c^2} \frac{\partial^2 u}{\partial x^2}$$

The *heat equation* for u(x, y, t), the temperature of a thin sheet at position (x, y) at time *t*:

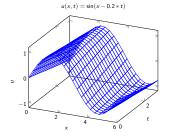
$$\frac{\partial u}{\partial t}(x, y, t) = \mathcal{K}\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) u(x, y, t)$$

Laplace's Equation for the electrostatic potential of a chrage distribution ρ :

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right)u(x, y, z) = 4\pi\rho(x, y, z)$$

PDEs

The Wave Equation



u(x, t) gives the height of a wave moving down a channel as a function of distance x and time t

For each fixed t, we get a "snap-shot" of the wave

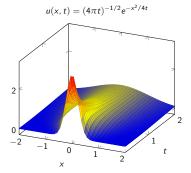
For each fixed x, we get the height of the wave, at that point, as a function of time

・ロト ・ 雪 ト ・ ヨ ト

э

PDEs

The Heat Equation



For each t we get a "snapshot" of the distribution of heat–at first heat concentrates near x = 0, but then diffuses and cools as time moves forward

(日)、

э