◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

# Math 213 - Tangent Planes and Linear Approximation

Peter A. Perry

University of Kentucky

September 28, 2018

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

### Homework

- Re-read section 14.4
- Start working on practice problems in section 14.4, 1, 3, 5, 11-21 (odd), 25-33 (odd)
- Re-re-read section 14.4 for Monday's Lecture

# Unit II: Differential Calculus of Several Variables

- Lecture 13 Functions of Several Variables
- Lecture 14 Limits and Continuity
- Lecture 15 Partial Derivatives
- Lecture 16 Tangent Planes and Linear Approximation, I
- Lecture 17 Tangent Planes and Linear Approximation, II
- Lecture 18 The Chain Rule
- Lecture 19 Directional Derivatives and the Gradient
- Lecture 20 Maximum and Minimum Values, I
- Lecture 21 Maximum and Minimum Values, II
- Lecture 22 Lagrange Multipliers
- Lecture 23 Review for Exam 2

# Goals of the (Two) Day(s)

- Understand how the partial derivatives  $f_x(a, b)$  and  $f_y(a, b)$  define the *tangent plane* to the graph of z = f(x, y) at (a, b, f(a, b))
- Understand how the partial derivatives  $f_x(a, b)$  and  $f_y(a, b)$  define the *linear approximation* L(x, y) to f(x, y) near (x, y) = (a, b)
- Understand the *total differential dz* of a function z = f(x, y)
- Generalize these ideas to functions of three variables

# Warm-Up: Linear Functions



x

The graph of a line Ax + By = Cdefines a linear function of one variable

$$y = f(x) = \frac{C}{B} - \frac{A}{C}x$$

The graph of a plane ax +by + cz = d defines a *linear* function of two variables

$$z = f(x, y) = \frac{d}{c} - \frac{a}{c}x - \frac{b}{c}y$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

### Functions of One Variable - Tangent Line



The derivative f'(a) gives the slope of the tangent line to the graph of y = f(x) at (a, f(a)).

The derivative f'(a) defines a linear function

$$L(x) = f(a) + f'(a)(x - a)$$

the linear approximation to f near a

The differential of 
$$y = f(x)$$
 is

$$dy = f'(x) dx$$

イロト 不得 トイヨト イヨト

э

### Functions of One Variable - Differentiability



Recall that if y = f(x), the *increment* of y as x changes from a to  $a + \Delta x$  is

$$\Delta y = f(a + \Delta x) - f(a).$$

If f is differentiable at a, then

$$\Delta y = f'(a) \,\Delta x + \varepsilon \Delta x$$

where

$$\epsilon 
ightarrow 0$$
 as  $\Delta x 
ightarrow 0$ 

That is, the linear approximation is very good as  $\Delta x \rightarrow 0$ .

イロト 不得 トイヨト イヨト

э

Tangent Plane

### Derivatives - Two Variables

The derivatives  $f_x(a, b)$  and  $f_y(a, b)$  define a *tangent plane* to the graph of f at (a, b, f(a, b))

(日) (個) (目) (目) (目) (目)



Tangent Plane

#### Derivatives - Two Variables

The derivatives  $f_x(a, b)$  and  $f_y(a, b)$  define a *tangent plane* to the graph of f at (a, b, f(a, b))

These derivatives define a linear function

$$L(x, y) = f(a, b)$$
  
+  $f_x(a, b)(x - a)$   
+  $f_y(a, b)(x - b)$ 

the linear approximation to f near (a, b)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <



Tangent Plane

#### Derivatives - Two Variables

The derivatives  $f_x(a, b)$  and  $f_y(a, b)$  define a *tangent plane* to the graph of f at (a, b, f(a, b))

These derivatives define a linear function

$$L(x, y) = f(a, b)$$
  
+  $f_x(a, b)(x - a)$   
+  $f_y(a, b)(x - b)$ 

the linear approximation to f near (a, b)

The differential of 
$$z = f(x, y)$$
 is

$$dz = \frac{\partial f}{\partial x} \, dx + \frac{\partial f}{\partial y} \, dy$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <



### Find the Tangent Plane

If f has continuous partial derivatives, the tangent plane to z=f(x,y) at (a,b,f(a,b)) is

$$z - f(a, b) = f_x(a, b)(x - a) + f_y(a, b)(y - b)$$



1. Find the equation of the tangent plane to the surface

$$z = 2x^2 + y^2 - 5y$$

at (1, 2, -4).

### Find the Tangent Plane

If f has continuous partial derivatives, the tangent plane to z = f(x, y) at (a, b, f(a, b)) is

$$z - f(a, b) = f_x(a, b)(x - a) + f_y(a, b)(y - b)$$



1. Find the equation of the tangent plane to the surface

$$z = 2x^2 + y^2 - 5y$$

at (1, 2, -4).

2. Find the equation of the tangent plane to the surface

$$z = e^{x-y}$$

### The Tangent Plane Contains Tangent Lines



The red curves represent f(a, y) and f(x, b)

The blue lines are the tangent lines  $r_1(t) = \langle a, b, f(a, b) \rangle + t \langle 1, 0, f_x(a, b) \rangle$ 

$$r_2(t) = \langle a, b, f(a, b) 
angle + t \langle 0, 1, f_y(a, b) 
angle$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Learning Goals

# The Tangent Plane Defines a Linear Approximation



The tangent line is the graph of a linear function

$$L(x) = f(a) + f'(a)(x - a)$$

that approximates f(x) near x = a

The tangent plane is the graph of a linear function

L(x, y) = f(a, b) + $f_x(a, b)(x - a) + f_y(a, b)(y - b)$ that approximates f(x, y) near (x, y) =(a, b)



### The Linear Approximation

The linear approximation to f(x, y) at (a, b) is

$$L(x, y) = f(a, b) + f_x(a, b)(x - a) + f_y(a, b)(y - b)$$

- 1. Show that the linear approximation to  $f(x, y) = e^x \cos(xy)$  at (0, 0) is L(x, y) = x + 1
- 2. Suppose that f(2,5) = 6,  $f_x(2,5) = 1$ , and  $f_y(2,5) = -1$ . Use a linear approximation to estimate f(2.2, 4.9)

### Differentiability

If z = f(x, y), the increment of z as x changes from a to  $a + \Delta x$  and y changes from b to  $b + \Delta y$  is:

$$\Delta z = f(a + \Delta x, b + \Delta y) - f(a, b)$$

f is differentiable at (a, b) if

$$\Delta z = f_x(a, b)\Delta x + f_y(a, b)\Delta y + \varepsilon_1 \Delta x + \varepsilon_2 \Delta y$$

where  $\varepsilon_1$  and  $\varepsilon_2$  approach 0 as  $(\Delta x, \Delta y) \rightarrow (0, 0)$ .

**Theorem** If the partial derivatives  $f_x$  and  $f_y$  of f exist near (a, b), and are continuous at (a, b), then f is differentiable at (a, b).

1. Explain why the function  $f(x, y) = \sqrt{xy}$  is differentiable at (1, 4) and find its linearization

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

### What Happens if f is not differentiable?



Use the definition to check that  $f_x(0,0) = f_y(0,0) = 0$ Show that  $f_x(x,y)$  and  $f_y(x,y)$  are not continuous at (0,0)