# Math 213 - Tangent Planes and Linear Approximation 

Peter A. Perry<br>University of Kentucky

September 28, 2018

## Homework

- Re-read section 14.4
- Start working on practice problems in section 14.4, 1, 3, 5, 11-21 (odd), 25-33 (odd)
- Re-re-read section 14.4 for Monday's Lecture


## Unit II: Differential Calculus of Several Variables

Lecture 13 Functions of Several Variables<br>Lecture 14 Limits and Continuity<br>Lecture 15 Partial Derivatives<br>Lecture 16 Tangent Planes and Linear Approximation, I<br>Lecture 17 Tangent Planes and Linear Approximation, II<br>Lecture 18 The Chain Rule<br>Lecture 19 Directional Derivatives and the Gradient<br>Lecture 20 Maximum and Minimum Values, I<br>Lecture 21 Maximum and Minimum Values, II<br>Lecture 22 Lagrange Multipliers<br>Lecture 23 Review for Exam 2

## Goals of the (Two) Day(s)

- Understand how the partial derivatives $f_{x}(a, b)$ and $f_{y}(a, b)$ define the tangent plane to the graph of $z=f(x, y)$ at ( $a, b, f(a, b))$
- Understand how the partial derivatives $f_{x}(a, b)$ and $f_{y}(a, b)$ define the linear approximation $L(x, y)$ to $f(x, y)$ near $(x, y)=(a, b)$
- Understand the total differential $d z$ of a function $z=f(x, y)$
- Generalize these ideas to functions of three variables


## Warm-Up: Linear Functions




The graph of a line $A x+B y=C$ defines a linear function of one variable

$$
y=f(x)=\frac{C}{B}-\frac{A}{C} x
$$

The graph of a plane $a x+$ by $+c z=d$ defines a linear function of two variables

$$
z=f(x, y)=\frac{d}{c}-\frac{a}{c} x-\frac{b}{c} y
$$

## Functions of One Variable - Tangent Line



The derivative $f^{\prime}(a)$ gives the slope of the tangent line to the graph of $y=f(x)$ at $(a, f(a))$.

The derivative $f^{\prime}(a)$ defines a linear function

$$
L(x)=f(a)+f^{\prime}(a)(x-a)
$$

the linear approximation to $f$ near $a$

The differential of $y=f(x)$ is

$$
d y=f^{\prime}(x) d x
$$

## Functions of One Variable - Differentiability



Recall that if $y=f(x)$, the increment of $y$ as $x$ changes from $a$ to $a+\Delta x$ is

$$
\Delta y=f(a+\Delta x)-f(a)
$$

If $f$ is differentiable at $a$, then

$$
\Delta y=f^{\prime}(a) \Delta x+\varepsilon \Delta x
$$

where

$$
\varepsilon \rightarrow 0 \text { as } \Delta x \rightarrow 0
$$

That is, the linear approximation is very good as $\Delta x \rightarrow 0$.

## Derivatives - Two Variables

The derivatives $f_{x}(a, b)$ and $f_{y}(a, b)$ define a tangent plane to the graph of $f$ at ( $a, b, f(a, b)$ )


## Derivatives - Two Variables

The derivatives $f_{x}(a, b)$ and $f_{y}(a, b)$ define a tangent plane to the graph of $f$ at $(a, b, f(a, b))$


These derivatives define a linear function

$$
\begin{aligned}
L(x, y)= & f(a, b) \\
& +f_{x}(a, b)(x-a) \\
& +f_{y}(a, b)(x-b)
\end{aligned}
$$

the linear approximation to $f$ near $(a, b)$

## Derivatives - Two Variables

The derivatives $f_{x}(a, b)$ and $f_{y}(a, b)$ define a tangent plane to the graph of $f$ at $(a, b, f(a, b))$


These derivatives define a linear function

$$
\begin{aligned}
L(x, y)= & f(a, b) \\
& +f_{x}(a, b)(x-a) \\
& +f_{y}(a, b)(x-b)
\end{aligned}
$$

the linear approximation to $f$ near $(a, b)$

The differential of $z=f(x, y)$ is

$$
d z=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y
$$

## Find the Tangent Plane

If $f$ has continuous partial derivatives, the tangent plane to $z=f(x, y)$ at $(a, b, f(a, b))$ is

$$
z-f(a, b)=f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

1. Find the equation of the tangent plane to the surface

$$
z=2 x^{2}+y^{2}-5 y
$$

at $(1,2,-4)$.

## Find the Tangent Plane

If $f$ has continuous partial derivatives, the tangent plane to $z=f(x, y)$ at $(a, b, f(a, b))$ is

$$
z-f(a, b)=f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

1. Find the equation of the tangent plane to the surface

$$
z=2 x^{2}+y^{2}-5 y
$$

at $(1,2,-4)$.
2. Find the equation of the tangent plane to the surface

$$
z=e^{x-y}
$$

at $(2,2,1)$.

## The Tangent Plane Contains Tangent Lines



The red curves represent $f(a, y)$ and $f(x, b)$

The blue lines are the tangent lines

$$
\begin{aligned}
& r_{1}(t)=\langle a, b, f(a, b)\rangle+t\left\langle 1,0, f_{x}(a, b)\right\rangle \\
& r_{2}(t)=\langle a, b, f(a, b)\rangle+t\left\langle 0,1, f_{y}(a, b)\right\rangle
\end{aligned}
$$

## The Tangent Plane Defines a Linear Approximation



The tangent line is the graph of a linear function

$$
L(x)=f(a)+f^{\prime}(a)(x-a)
$$

that approximates $f(x)$ near $x=a$

The tangent plane is the graph of a linear function

$$
\begin{aligned}
& L(x, y)=f(a, b)+ \\
& \quad f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
\end{aligned}
$$

that approximates $f(x, y)$ near $(x, y)=$ $(a, b)$

## The Linear Approximation

The linear approximation to $f(x, y)$ at $(a, b)$ is

$$
L(x, y)=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

1. Show that the linear approximation to $f(x, y)=e^{x} \cos (x y)$ at $(0,0)$ is $L(x, y)=x+1$
2. Suppose that $f(2,5)=6, f_{x}(2,5)=1$, and $f_{y}(2,5)=-1$. Use a linear approximation to estimate $f(2.2,4.9)$

## Differentiability

If $z=f(x, y)$, the increment of $z$ as $x$ changes from $a$ to $a+\Delta x$ and $y$ changes from $b$ to $b+\Delta y$ is:

$$
\Delta z=f(a+\Delta x, b+\Delta y)-f(a, b)
$$

$f$ is differentiable at $(a, b)$ if

$$
\Delta z=f_{x}(a, b) \Delta x+f_{y}(a, b) \Delta y+\varepsilon_{1} \Delta x+\varepsilon_{2} \Delta y
$$

where $\varepsilon_{1}$ and $\varepsilon_{2}$ approach 0 as $(\Delta x, \Delta y) \rightarrow(0,0)$.

Theorem If the partial derivatives $f_{x}$ and $f_{y}$ of $f$ exist near $(a, b)$, and are continuous at $(a, b)$, then $f$ is differentiable at $(a, b)$.

1. Explain why the function $f(x, y)=\sqrt{x y}$ is differentiable at $(1,4)$ and find its linearization

## What Happens if $f$ is not differentiable?



Let

$$
f(x, y)= \begin{cases}\frac{x y}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

Use the definition to check that $f_{x}(0,0)=f_{y}(0,0)=0$
Show that $f_{x}(x, y)$ and $f_{y}(x, y)$ are not continuous at $(0,0)$

