Math 213 - Maximum and Minimum Values, II

Peter A. Perry
University of Kentucky

October 10, 2018

Homework

- Re-read section 14.7, esp. pp. 965-967
- Continue homework on section 14.7, problems 1-15 (odd), 31, 33, 37, 41-49 (odd)
- Read section 14.8 for Friday's lecture
- Finish webwork B4 on 15.5-14.6 (chain rule, directional derivatives)
- Study for Quiz \#6 on 14.5-14,7
- Remember that Exam II is next Wednesday, October 17 at 5 PM

Unit II: Differential Calculus of Several Variables

Lecture 13 Functions of Several Variables
Lecture 14 Limits and Continuity
Lecture 15 Partial Derivatives
Lecture 16 Tangent Planes and Linear Approximation, I
Lecture 17 Tangent Planes and Linear Approximation, II
Lecture 18 The Chain Rule
Lecture 19 Directional Derivatives and the Gradient
Lecture 20 Maximum and Minimum Values, I
Lecture 21 Maximum and Minimum Values, II
Lecture 22 Lagrange Multipliers
Lecture 23 Review for Exam 2

Goals of the Day

- Understand how to find absolute maxima and minima of functions of two variables on a bounded, closed set

Review of Calculus I

The Closed Interval Method To find the absolute maximum and minimum values of a continuous function on a closed interval $[a, b]$:

1. Find the values of f at the critical numbers of f in $[a, b]$
2. Find the values of f at the endpoints of the interval
3. The largest of the values from steps 1 and 2 is the absolute maximum of f on $[a, b]$; the smallest of these values is the absolute minimum of f on $[a, b]$.

For functions of two variables:

1. The "closed interval" on the line is replaced by a "closed set" in the plane
2. The boundary of a closed set is a curve rather than just two points

Otherwise, the idea is much the same!

Bounded Sets, Closed Sets, Boundaries

A bounded set D in \mathbb{R}^{2} is a set that can be enclosed inside a large enough circle

Bounded Sets, Closed Sets, Boundaries

A bounded set D in \mathbb{R}^{2} is a set that can be enclosed inside a large enough circle

A boundary point is a point (a, b) that belongs to D but has points that don't belong to D arbitrarily close to it

Bounded Sets, Closed Sets, Boundaries

A bounded set D in \mathbb{R}^{2} is a set that can be enclosed inside a large enough circle

A boundary point is a point (a, b) that belongs to D but has points that don't belong to D arbitrarily close to it

The boundary of a set D is the set consisting of all the boundary points

Bounded Sets, Closed Sets, Boundaries

A bounded set D in \mathbb{R}^{2} is a set that can be enclosed inside a large enough circle

A boundary point is a point (a, b) that belongs to D but has points that don't belong to D arbitrarily close to it

The boundary of a set D is the set consisting of all the boundary points

A closed set D is one that contains all of its boundary points.

Bounded Sets, Closed Sets, Boundaries

Classify each of the following sets as bounded or not bounded, and closed or not closed

$$
\begin{array}{ll}
\text { 1. } & D=\left\{(x, y): x^{2}+y^{2}<1\right\} \\
\text { 2. } & D=\left\{(x, y,): x^{2}+y^{2} \leq 1\right\} \\
\text { 3. } & D=\left\{(x, y): x^{2}+y^{2} \geq 1\right\} \\
\text { 4. } & D=\left\{(x, y): x^{2}+y^{2}>1\right\}
\end{array}
$$

The Extreme Value Theorem

Extreme Value Theorem If f is continuous on a closed, bounded set D in \mathbb{R}^{2}, then f attains an absolute maximum value $f\left(x_{1}, y_{1}\right)$ and an absolute minimum value $f\left(x_{2}, y_{2}\right)$ at some points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in D.

Practical fact: These extreme values occur either in the interior of D, where the second derivative test works, or on the boundary of D, where the search for maxima and minima can be reduced to a Calculus I problem.

The Closed Set Method

The Closed Set Method To find the absolute minimum and maximum values of a continuous function f on a closed, bounded set D :

1. Find the values of f at critical points of f in D
2. Find the extreme values of f on the boundary of D
3. The largest of the values from steps 1 and 2 is the absolute maximum value; the smallest of these values is the absolute minimum value.

The tricky bit is step 2 .

Warm-Up: Finding Extreme Values on a Boundary

1. Find the extreme values of

$$
f(x, y)=x^{2}-y^{2}
$$

on the boundary of the disc
$x^{2}+y^{2}=1$
2. Find the extreme values of

$$
f(x, y)=x^{2}+y^{2}-2 x
$$

on the boundary of the rectangular region with vertices $(2,0),(0,2)$ and $(0,-2)$.

Finding Extreme Values

1. Find the extreme values of

$$
f(x, y)=x^{2}-y^{2}
$$

on the disc

$$
\left\{(x, y): x^{2}+y^{2} \leq 1\right\} .
$$

2. Find the extreme values of

$$
f(x, y)=x^{2}+y^{2}-2 x
$$

on the rectangular region with vertices $(2,0),(0,2)$ and $(0,-2)$.

More Extreme Values

Find the absolute maximum and absolute minimum of

$$
f(x, y)=x y^{2}
$$

on the region

$$
D=\left\{(x, y): x \geq 0, y \geq 0, x^{2}+y^{2} \leq 3\right\}
$$

Yet More Extreme Values

Find the absolute maximum and absolute minimum of

$$
f(x, y)=x^{3}-3 x-y^{3}+12 y
$$

if D is the quadrilateral whose vertices are $(-2,3),(2,3),(2,2)$, and $(-2,-2)$.

A Word Problem with Extreme Values

Find the volume of the largest rectangular box in the first octant with three faces in the coordinate planes and one vertex in the plane

$$
x+2 y+3 z=6
$$

1. What is the volume of the box in terms of (x, y) only?
2. What values of (x, y) are allowed?
3. Do we need to check the boundary?
