ex. $\iint_{R} u x y d A$
where R is enclosed between

Solution 守1

$$
\begin{aligned}
& \int_{2}^{4} \int_{\sqrt{2}}^{\sqrt{v x}} x x y d y d x \\
& \frac{v x}{2} \\
& \left.=\int_{2}^{4} x \cdot \frac{y^{2}}{2}\right]_{w / 2}^{\sqrt{2 x}} d x \\
& \text { Fix ur. } \\
& y \text { ranges from } \\
& \frac{x}{2} \text { to } \sqrt{x} \\
& =\int_{2}^{4} x \cdot\left(\frac{v x}{2}-\frac{x^{2}}{8}\right) d v x \\
& \left.=\frac{x^{3}}{6}-\frac{v x^{4}}{32}\right]_{2}^{4}=\frac{64}{6}-\frac{16 \cdot 16}{32}-\left(\frac{8}{6}-\frac{16}{32}\right) \\
& =\frac{56}{6}-\frac{16 \cdot 15}{32}=\frac{56}{26}-\frac{15}{2} \\
& =\frac{56}{6}-\frac{45}{6}=\frac{11}{6}
\end{aligned}
$$

Sol'n \#2 Other direction,

$$
\int_{1}^{\sqrt{2}} \int_{2}^{2 y} x x y d x x d y+\int_{\sqrt{2}}^{2} \int_{y^{2}}^{2 y} v x y d x x d y
$$

$0 x$.
where R is enclosed by

$$
\int_{1}^{3} \int_{-y+1}^{y-1}\left(2 x-y^{2}\right) d v x d y
$$

other direction

$$
\begin{aligned}
& \int_{-2}^{0} \int_{-v x+1}^{3}\left(2 x-y^{2}\right) d y d x \\
& +\int_{0}^{2} \int_{v x+1}^{3}\left(2 x-y^{2}\right) d y d x
\end{aligned}
$$

ex. Find the volume of the solid bounded by the cylinder

$$
x^{2}+y^{2}=4
$$

+ the planed $y+z=4 \quad+z=0$,

$$
\begin{aligned}
V & =\iint_{R_{1}} 4-y d y . \\
& =\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{y \pm \sqrt{4-x^{2}}}(4-y) d y d x \\
& \left.=\int_{-2}^{2} 4 y-\frac{y^{2}}{2}\right]_{-\sqrt{4-x^{2}}}^{+\sqrt{4-x^{2}}} d x \\
& =\int_{-2}^{2} 8 \sqrt{4-u x^{2}} d x x^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Let } v x=2 \sin \theta \\
& \Rightarrow \sin \theta=x / 2 \\
& d u x=2 \cos \theta d \theta \text {. } \\
& \frac{2}{\sqrt{4-1 x^{2}}} \\
& -2 \leq x \leq 2 \\
& -1 \leq \frac{w x}{2} \leq 1 \\
& -1 \leq \sin \theta \leq 1 \\
& -4 / 2 \leq 0 \leq \pi / 2 \\
& =\int_{-\pi / 2}^{\pi / 2} 8 \cdot \sqrt{4 \cos ^{2} \theta} \cdot 2 \cos \theta d \theta \text {. } \\
& =\int_{-\pi / 2}^{\pi / 2} 32 \cdot \cos ^{2} \theta d \theta \text {. }
\end{aligned}
$$

Recall $\cos ^{2} \theta=\frac{1+\cos 2 \theta}{2}$

$$
\begin{aligned}
& =32 \int_{-\pi / 2}^{\pi / 2} \frac{1+\cos 2 \theta}{2} d \theta \\
& =32 \cdot\left(\frac{1}{2} \theta+\frac{\sin 2 \theta}{4}\right]_{-\pi / 2}^{\pi} \\
& =32 \cdot \frac{1}{2}\left(\frac{\pi / 2}{2}-\left(\frac{-\pi}{2}\right)\right) \\
& =16 \cdot \pi
\end{aligned}
$$

Propertieg
R any region.
(1) $\iint_{R} f(x, y)+g(x, y) d A=\iint_{R} f d A+\iint_{R} g d A$.
(2) $\iint_{R} c \cdot f(x, y) d A=$
c. $\iint_{R} f(x, y) d A$.
(3) If $g(x, y) \leq f(x, y)$ for all $(x, y) \in R$ then

$$
\iint_{R} g(x, y) \leq \iint_{R} f(x, y)
$$

ex. $\quad \int_{R, R} x y d A \quad R=[1,2] \times[3,4]$.

$$
\begin{equation*}
3 \leq x y \leq 8 \text { on } R \quad 3! \tag{R.}
\end{equation*}
$$

So

$$
\begin{array}{cc}
\iint_{R} 3 d A \leq \iint_{R} x y d A \leq \iint_{R} 8 d A & 11 \\
311=3 & 8 \cdot \operatorname{arca}(R)=8.1=8
\end{array}
$$

(4). Average value of a function f on al region R is

$$
\frac{1}{\text { Area, }} \iint_{R,} f d A
$$

(5) $\iint_{R} 1 \cdot d A=$ Areal of region R

$$
\text { geometrically }=\text { volume }
$$

(6) If $R=R_{1} \cup R_{2}$. then

$$
\iint_{R} f d A=\iint_{R_{1}} f d A+\iint_{R_{2}} f d A
$$

ex. Find volume of tetrahedron enclosed by cord planes t plane, $2 x+y+z=4$.

$$
\text { Volume }=\int_{0}^{2} \int_{0}^{462 v x} 4-2 \omega x-y
$$

$d y \cdot d x x$

$$
\left.=\int_{0}^{2} 4 y-2 x y-\frac{y^{2}}{2}\right]_{0}^{4-2 x x} d x
$$

$$
=\int_{0}^{2} 4(4-2 x)-2 x(4-2 x)-\frac{(4-2 x)^{2}}{2} d x
$$

$$
\frac{(4-2 x)^{2}}{2} d x
$$

$$
\begin{aligned}
\text { Algo } \\
\begin{aligned}
V_{d}(\text { tetra) } & =\frac{1}{3}(\text { base }) \cdot \text { freight } \\
& =\frac{1}{3}\left(\frac{1}{2} \cdot 2 \cdot 4\right) \cdot 4
\end{aligned}
\end{aligned}
$$

$$
\left.=16 x-\frac{16 x^{2}}{2}+\frac{4 x^{3}}{3}+\frac{(4-2 x)^{3}}{612}\right]_{0}
$$

$$
=16(4)-16(8)+\frac{(16)^{2}}{3}+\frac{4^{3}}{12} \text { should be }
$$

The final answer really is $16 / 3$.

$$
-1+\frac{16}{12}+\frac{1}{12}=\frac{5}{12}
$$

$$
=16 \cdot 4 \cdot \frac{5}{123}=\frac{1212}{3}
$$

ex. Vol, endoged by $\begin{aligned} z & =x^{2} \\ y & =y^{2}\end{aligned}$ \} glindors,

+ planes $z=0$

$$
y=4
$$

Volume encloged by

$$
y=x^{2}
$$

\downarrow

$$
\begin{aligned}
& z=3 y \\
& z=2+y
\end{aligned}
$$

$$
z=3 y
$$

