Math 213 - Double Integrals in Polar Coordinates

Peter A. Perry

University of Kentucky

October 22, 2018

Homework

- Re-read section 15.3
- Begin work on 1-4, 5-31 (odd), 35, 37 from 15.3
- Read section 15.4 for Wednesday, October 24
- Continue working on Webwork C1

Unit III: Multiple Integrals

Lecture 24 Double Integrals over Rectangles
Lecture 25 Double Integrals over General Regions
Lecture 26 Double Integrals in Polar Coodinates
Lecture 27 Applications of Double Integrals
Lecture 28 Surface Area

Lecture 29 Triple Integrals
Lecture 30 Triple Integrals in Cylindrical Coordinates
Lecture 31 Triple Integrals in Spherical Coordinates
Lecture 32 Change of Variable in Multiple Integrals, Part I
Lecture 33 Change of Variable in Multiple Integrals, Part II
Lecture 34 Exam III Review

Goals of the Day

- Review Polar Coordinates, introduce Polar Rectangles
- Learn how to compute double integrals over polar rectangles
- Learn how to compute double integrals over polar regions
- Learn to compute volumes using polar integrals

Reality Check

	Calculus I	Calculus III
Riemann sum	$\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x$	$\sum_{i, j=1}^{n} f\left(x_{i}^{*}, y_{j}^{*}\right) \Delta A$
Riemann Integral	$\int_{a}^{b} f(x) d x$	$\iint_{D} f(x, y) d A$
Way of computing	$F(b)-F(a)$	Iterated Integral
Interpretation	Area under a curve	Volume under a surface

Review of Polar Coordinates

Recall that

$$
r^{2}=x^{2}+y^{2}, \quad \tan \theta=\frac{y}{x}
$$

and

$$
x=r \cos \theta, \quad y=r \sin \theta
$$

How would you describe the regions at left in polar coordinates?

Polar Rectangles

A polar rectangle is a region

$$
R=\{(r, \theta): a \leq r \leq b, \quad \alpha \leq \theta \leq \beta\}
$$

Polar Rectangles

A polar rectangle is a region

$$
R=\{(r, \theta): a \leq r \leq b, \quad \alpha \leq \theta \leq \beta\}
$$

Polar Rectangles

A polar rectangle is a region

$$
R=\{(r, \theta): a \leq r \leq b, \quad \alpha \leq \theta \leq \beta\}
$$

Polar Rectangles

A polar rectangle is a region

$$
R=\{(r, \theta): a \leq r \leq b, \quad \alpha \leq \theta \leq \beta\}
$$

Like an ordinary rectangle a polar rectangle can be divided into subrectangles

Polar Rectangles

A polar rectangle is a region

$$
R=\{(r, \theta): a \leq r \leq b, \quad \alpha \leq \theta \leq \beta\}
$$

Like an ordinary rectangle a polar rectangle can be divided into subrectangles

A small polar rectangle has area

$$
\Delta A \simeq r \Delta r \Delta \theta
$$

Integrals Over Polar Rectangles

The double integral $\iint_{R} f(x, y) d A$ is a limit of Riemann sums:

$$
\sum_{i, j=1}^{n} f\left(r_{i}^{*} \cos \theta_{j}^{*}, r_{i}^{*} \sin \theta_{j}^{*}\right) r_{j} \Delta r \Delta \theta
$$

Rectangle $R_{i j}$ is given by

$$
\begin{gathered}
R_{i j}=\left\{(r, \theta): r_{i-1} \leq r \leq r_{i}, \theta_{j-1} \leq \theta \leq \theta_{j}\right\} \\
r_{i}=a+i \Delta r \quad, \theta_{j}=\alpha+j \Delta \theta
\end{gathered}
$$

where

$$
\Delta r=\frac{b-a}{n}, \quad \Delta \theta=\frac{\beta-\alpha}{n}
$$

In the limit this leads to an iterated integral

$$
\int_{\alpha}^{\beta} \int_{a}^{b} f(r \cos \theta, r \sin \theta) r d r d \theta
$$

Integrals Over Polar Rectangles

Double Integral In Polar Coordinates The integral of a continuous function $f(x, y)$ over a polar rectange R given by $a \leq r \leq b, \alpha \leq$ $r \leq \beta$, is

$$
\iint_{R} f(x, y) d A=\int_{\alpha}^{\beta} \int_{a}^{b} f(r \cos \theta, r \sin \theta) r d r d \theta
$$

1. Find $\iint_{R}(2 x-y) d A$ if R is the region in the first quadrant bounded by the circle $x^{2}+y^{2}=4$ and the lines $x=0$ and $y=x$.
2. Find $\iint_{R} e^{-x^{2}-y^{2}} d A$ if D is the region bounded by the semicircle $x=\sqrt{4-y^{2}}$ and the y-axis.

Integrals over Polar Regions

If f is continuous over a polar region of the form

$$
D=\left\{(r, \theta): \alpha \leq \theta \leq \beta, h_{1}(\theta) \leq r \leq h_{2}(\theta)\right\}
$$

then

$$
\begin{aligned}
& \iint_{D} f(x, y) d A= \\
& \quad \int_{\alpha}^{\beta} \int_{h_{1}(\theta)}^{h_{2}(\theta)} f(r \cos \theta, r \sin \theta) r d r d \theta
\end{aligned}
$$

Integrals over Polar Regions

If f is continuous over a polar region of the form
$D=\left\{(r, \theta): \alpha \leq \theta \leq \beta, h_{1}(\theta) \leq r \leq h_{2}(\theta)\right\}$
then

$$
\begin{aligned}
& \iint_{D} f(x, y) d A= \\
& \quad \int_{\alpha}^{\beta} \int_{h_{1}(\theta)}^{h_{2}(\theta)} f(r \cos \theta, r \sin \theta) r d r d \theta
\end{aligned}
$$

Find the area of one loop of the rose

$$
r=\cos 3 \theta
$$

Volumes of Solids

Find the volume under the paraboloid

$$
z=x^{2}+y^{2}
$$

and above the disc

$$
x^{2}+y^{2}<25
$$

1. Describe the disc in polar coordinates
2. Transform $f(x, y)$ to polar coordinates

Volumes of Solids

Find the volume inside the sphere

$$
x^{2}+y^{z}+z^{2}=16
$$

and outside the cylinder

$$
x^{2}+y^{2}=4
$$

