Math 213 - Applications of Double Integrals

Peter A. Perry

University of Kentucky

October 26, 2018

Homework

- Re-read section 15.4
- Begin work on problems 1-23 (odd) from 15.4
- Read section 15.5 for Monday, October 29
- Finish up Webwork C1

Unit III: Multiple Integrals

Lecture 24 Double Integrals over Rectangles
Lecture 25 Double Integrals over General Regions
Lecture 26 Double Integrals in Polar Coodinates
Lecture 27 Applications of Double Integrals
Lecture 28 Surface Area

Lecture 29 Triple Integrals
Lecture 30 Triple Integrals in Cylindrical Coordinates
Lecture 31 Triple Integrals in Spherical Coordinates
Lecture 32 Change of Variable in Multiple Integrals, Part I
Lecture 33 Change of Variable in Multiple Integrals, Part II
Lecture 34 Exam III Review

Goals of the Day

- Compute Mass of a Lamina from Mass Density
- Compute Moments and Centers of Mass
- Compute Moments of Inertia

Density to Mass

The density of a plane solid (lamina) D is the mass per unit area:

$$
\rho(x, y)=\lim _{\Delta A \rightarrow 0} \frac{\Delta m}{\Delta A} .
$$

The total mass is approximately

$$
M \simeq \sum_{i, j=1}^{n} \rho\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A
$$

where (i, j) index rectangles in D of area ΔA

The total mass is exactly

$$
M=\iint_{D} \rho(x, y) d A
$$

Charge Density to Charge

The charge density of a plane conductor D is the mass per unit area:

$$
\rho(x, y)=\lim _{\Delta A \rightarrow 0} \frac{\Delta Q}{\Delta A} .
$$

The total mass is approximately

$$
Q \simeq \sum_{i, j=1}^{n} \rho\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A
$$

where (i, j) index rectangles in D of area ΔA

The total mass is exactly

$$
Q=\iint_{D} \rho(x, y) d A
$$

Density to Mass

Electric charge is distributed over the disc $x^{2}+y^{2} \leq 1 \mathrm{~m}$ with charge density

$$
\sigma(x, y)=\sqrt{x^{2}+y^{2}}
$$

coulombs per square meter. Find the total charge Q on the disc.

Moments, Centers of Mass - Discrete Systems

For a set of point masses m_{i} at $\left(x_{i}, y_{i}\right)$:

- The total mass is $M=\sum_{i=1}^{n} m_{i}$

Moments, Centers of Mass - Discrete Systems

For a set of point masses m_{i} at $\left(x_{i}, y_{i}\right)$:

- The total mass is $M=\sum_{i=1}^{n} m_{i}$
- The moment with respect to the x-axis is $M_{x}=\sum_{i=1}^{n} y_{i} m_{i}$

Moments, Centers of Mass - Discrete Systems

For a set of point masses m_{i} at $\left(x_{i}, y_{i}\right)$:

- The total mass is $M=\sum_{i=1}^{n} m_{i}$
- The moment with respect to the x-axis is $M_{x}=\sum_{i=1}^{n} y_{i} m_{i}$
- The moment with respect to the y-axis is $M_{y}=\sum_{i=1}^{n} x_{i} m_{i}$

Moments, Centers of Mass - Discrete Systems

For a set of point masses m_{i} at $\left(x_{i}, y_{i}\right)$:

- The total mass is $M=\sum_{i=1}^{n} m_{i}$
- The moment with respect to the x-axis is $M_{x}=\sum_{i=1}^{n} y_{i} m_{i}$
- The moment with respect to the y-axis is $M_{y}=\sum_{i=1}^{n} x_{i} m_{i}$
- The center of mass is

$$
(\bar{x}, \bar{y})=\left(\frac{M_{y}}{M}, \frac{M_{x}}{M}\right)
$$

Moments, Centers of Mass - Discrete Systems

For a set of point masses m_{i} at $\left(x_{i}, y_{i}\right)$:

- The total mass is $M=\sum_{i=1}^{n} m_{i}$
- The moment with respect to the x-axis is $M_{x}=\sum_{i=1}^{n} y_{i} m_{i}$
- The moment with respect to the y-axis is $M_{y}=\sum_{i=1}^{n} x_{i} m_{i}$
- The center of mass is

$$
(\bar{x}, \bar{y})=\left(\frac{M_{y}}{M}, \frac{M_{x}}{M}\right)
$$

$$
(\bar{x}, \bar{y})=\left(\frac{\sum_{i=1}^{n} x_{i} m_{i}}{\sum_{i=1}^{n} m_{i}}, \frac{\sum_{i=1}^{n} y_{i} m_{i}}{\sum_{i=1}^{n} m_{i}}\right)
$$

Moments, Centers of Mass - Continuous Systems

If a lamina D has density $\rho(x, y)$:

$$
\begin{aligned}
& M \simeq \sum_{i j} \rho\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A \\
& M_{x} \simeq \sum_{i j} y_{i j}^{*} \rho\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A \\
& M_{y} \simeq \sum_{i j} x_{i j}^{*} \rho\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A
\end{aligned}
$$

Taking limits...

Moments, Centers of Mass - Continuous Systems
If a lamina D has density $\rho(x, y)$:

$$
\begin{aligned}
M & \simeq \sum_{i j} \rho\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A \\
M_{x} & \simeq \sum_{i j} y_{i j}^{*} \rho\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A \\
M_{y} & \simeq \sum_{i j} x_{i j}^{*} \rho\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A
\end{aligned}
$$

Taking limits...

$$
\begin{aligned}
M & =\iint_{D} \rho(x, y) d A \\
M_{x} & =\iint_{D} y \rho(x, y) d A \\
M_{y} & =\iint_{D} x \rho(x, y) d A
\end{aligned}
$$

Center of Mass

$$
\begin{aligned}
& M \simeq \sum_{i j} \rho\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A \\
& M_{x} \simeq \sum_{i j} y_{i j}^{*} \rho\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A \\
& M_{y} \simeq \sum_{i j} x_{i j}^{*} \rho\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A
\end{aligned}
$$

A lamina occupies the region

$$
D=\left\{(x, y): x^{2}+y^{2} \leq 1, x \geq 0, y \geq 0\right\}
$$

Find its center of mass if the density at each point is proportional to its distance from the x-axis.

Moment of Inertia - Discrete Systems

For a set of point masses m_{i} at $\left(x_{i}, y_{i}\right)$:

Moment of Inertia - Discrete Systems

For a set of point masses m_{i} at $\left(x_{i}, y_{i}\right)$:

- The moment of inertia about the x-axis is

$$
I_{x}=\sum_{i=1}^{n} m_{i} y_{i}^{2}
$$

Moment of Inertia - Discrete Systems

For a set of point masses m_{i} at $\left(x_{i}, y_{i}\right)$:

- The moment of inertia about the x-axis is

$$
I_{x}=\sum_{i=1}^{n} m_{i} y_{i}^{2}
$$

- The moment of inertia about the y-axis is

$$
\iota_{y}=\sum_{i=1}^{n} m_{i} x_{i}^{2}
$$

Moment of Inertia - Discrete Systems

For a set of point masses m_{i} at $\left(x_{i}, y_{i}\right)$:

- The moment of inertia about the x-axis is

$$
I_{x}=\sum_{i=1}^{n} m_{i} y_{i}^{2}
$$

- The moment of inertia about the y-axis is

$$
I_{y}=\sum_{i=1}^{n} m_{i} x_{i}^{2}
$$

- The moment of intertia about the origin is

$$
I_{0}=\sum_{i=1}^{n} m_{i}\left(x_{i}^{2}+y_{i}^{2}\right)
$$

Moment of Inertia - Continuous Systems
If a lamina D has density $\rho(x, y)$:

$$
\begin{aligned}
I_{x} & \simeq \sum_{i j}\left(y_{i j}^{*}\right)^{2} \rho\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A \\
I_{y} & \simeq \sum_{i j}\left(x_{i j}^{*}\right)^{2} \rho\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A \\
M_{y} & \simeq \sum_{i j}\left(\left(x_{i j}^{*}\right)^{2}+\left(y_{i j}^{*}\right)^{2}\right) \rho\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A
\end{aligned}
$$

Taking limits...

Moment of Inertia - Continuous Systems

If a lamina D has density $\rho(x, y)$:

$$
\begin{aligned}
I_{x} & \simeq \sum_{i j}\left(y_{i j}^{*}\right)^{2} \rho\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A \\
I_{y} & \simeq \sum_{i j}\left(x_{i j}^{*}\right)^{2} \rho\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A \\
M_{y} & \simeq \sum_{i j}\left(\left(x_{i j}^{*}\right)^{2}+\left(y_{i j}^{*}\right)^{2}\right) \rho\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A
\end{aligned}
$$

Taking limits...

$$
\begin{aligned}
& I_{x}=\iint_{D} y^{2} \rho(x, y) d A \\
& I_{y}=\iint_{D} x^{2} \rho(x, y) d A \\
& I_{0}=\iint_{D}\left(x^{2}+y^{2}\right) \rho(x, y) d A
\end{aligned}
$$

Moments of Inertia

$$
\begin{aligned}
& I_{x}=\iint_{D} y^{2} \rho(x, y) d A \\
& I_{y}=\iint_{D} x^{2} \rho(x, y) d A \\
& I_{0}=\iint_{D}\left(x^{2}+y^{2}\right) \rho(x, y) d A
\end{aligned}
$$

Find the moments of inertia I_{x}, I_{y}, and I_{0} for the part of the disc of radius a in the first quadrant, assuming that the density is constant.

