Math 213 - The Dot Product

Peter A. Perry

University of Kentucky

August 26, 2018

Homework

- Webwork A1 is due Wednesday night
- Re-read section 12.3, pp. 807–812
- Begin work on problems 1-37 (odd), 41-51 (odd) on pp. 812–814
- Begin work on Webwork A2 Remember to access WebWork only through Canvas!

Also, read section 12.4, pp. 814-821 for Wednesday

Unit I: Geometry and Motion in Space

Lecture 1	Three-Dimensional Coordinate Systems		
Lecture 2	Vectors		
Lecture 3	The Dot Product		
Lecture 4	The Cross Product		
Lecture 5	Equations of Lines and Planes, Part I		
Lecture 6	Equations of Lines and Planes, Part II		
Lecture 7	Cylinders and Quadric Surfaces		
Lecture 8	Vector Functions and Space Curves		
Lecture 9	Derivatives and Integrals of Vector Functions		
Lecture 10	Arc Length and Curvature		
Lecture 11	Motion in Space: Velocity and Acceleration		
Lecture 12	Exam 1 Review		

Goals of the Day

- Know how to compute the dot product **a** · **b** of two vectors and understand its geometric interpretation
- Understand direction angles and direction cosines of a vector and how to compute them using dot products
- Understand what the projection of one vector onto another vector is
- Understand the connection between dot products and the work done by a given force F through a displacement D

Definition If $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$, the **dot product** of \mathbf{a} and \mathbf{b} is the <u>number</u> $\mathbf{a} \cdot \mathbf{b}$ given by

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$$

There's a similar definition for the dot product of vectors in two dimensions. The dot product is also called the *scalar product* of two vectors.

Find $\mathbf{a} \cdot \mathbf{b}$ if ...

1.
$$\mathbf{a} = \langle 1, 1 \rangle$$
 and $\mathbf{b} = \langle 1, -1 \rangle$

2.
$$\mathbf{a} = \mathbf{b} = \left\langle \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right\rangle$$

3.
$$\mathbf{a} = 3\mathbf{i} - 4\mathbf{j} + \mathbf{k}, \ \mathbf{b} = 2\mathbf{i} + 5\mathbf{j}$$

4.
$$\mathbf{a} = 2\mathbf{i} + 5\mathbf{j}$$
 and $\mathbf{b} = 3\mathbf{i} - 4\mathbf{j}$

5.
$$a = 2i - 3j + 4k$$
 and $b = k$

Properties of the Dot Product

Fill in the blanks:

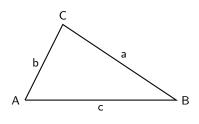
$$\mathbf{a} \cdot \mathbf{a} = \underline{\hspace{1cm}} \qquad \qquad \mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$$

$$\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \underline{\hspace{1cm}} \qquad (c\mathbf{a}) \cdot \mathbf{b} = \underline{\hspace{1cm}} (\mathbf{a} \cdot \mathbf{b}) = \mathbf{a} \cdot (\underline{\hspace{1cm}})$$

$$\mathbf{0} \cdot \mathbf{a} = \underline{\hspace{1cm}} \qquad (c\mathbf{a}) \cdot \mathbf{b} = \underline{\hspace{1cm}} (\mathbf{a} \cdot \mathbf{b}) = \mathbf{a} \cdot (\underline{\hspace{1cm}})$$

How can you check these identities?

The Law of Cosines



Recall from trigonometry:

$$c^2 = a^2 + b^2 - 2ab\cos\theta$$

where

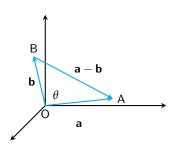
$$\theta = m \angle ACB$$

The West Important Shae in this Lecture

Theorem If θ is the angle between the vectors **a** and **b**, then

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| \, |\mathbf{b}| \, \cos(\theta)$$

You can prove that this is true using the law of cosines to the triangle OAB:



$$|AB|^2 = |OA|^2 + |OB|^2$$
$$-2|OA||OB|\cos\theta$$

SO

$$|\mathbf{a} - \mathbf{b}|^2 = |\mathbf{a}|^2 + |\mathbf{b}|^2 - 2|\mathbf{a}||\mathbf{b}|\cos\theta$$

Now express $|\mathbf{a} - \mathbf{b}|^2$ using the dot product.

Why The Last Slide Was Important

$$\underbrace{\mathbf{a} \cdot \mathbf{b}}_{\text{the dot product}} = \underbrace{|\mathbf{a}| |\mathbf{b}| \cos \theta}_{\text{its geometric meaning}}$$

• To find the angle between two nonzero vectors **a** and **b**, compute

$$\cos\theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}$$

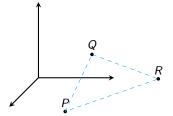
• Two nonzero vectors are orthogonal if and only if $\mathbf{a} \cdot \mathbf{b} = 0$

- 1. Are the vectors $\mathbf{a}=\langle 9,3\rangle$ and $\mathbf{b}=\langle -2,6\rangle$ parallel, orthogonal, or neither?
- 2. Find the three angles of the triangle with vertices P(2,0), Q(0,3), R(3,4)
- 3. Is the triangle with vertices P(1, -3, -2), Q(2, 0, -4), R(6, -2, -5) a right triangle?

Why Two Slides Ago Was Important

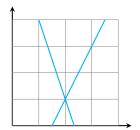
• Two nonzero vectors are orthogonal if and only if $\mathbf{a} \cdot \mathbf{b} = 0$

3. Is the triangle with vertices P(1, -3, -2), Q(2, 0, -4), R(6, -2, -5) a right triangle?



Puzzlers

At left is an equilateral triangle made of of vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} . If \mathbf{u} is a unit vector, find $\mathbf{u} \cdot \mathbf{v}$ and $\mathbf{u} \cdot \mathbf{w}$



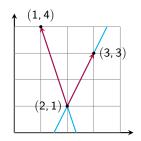
Find the acute angle between the lines

$$2x - y = 3$$

$$3x + y = 7$$

Puzzlers

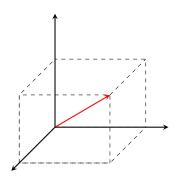
At left is an equilateral triangle made of of vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} . If \mathbf{u} is a unit vector, find $\mathbf{u} \cdot \mathbf{v}$ and $\mathbf{u} \cdot \mathbf{w}$

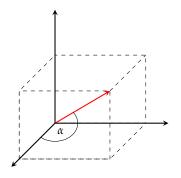


Find the acute angle between the lines

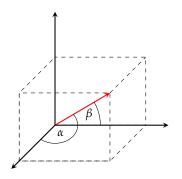
$$2x - y = 3$$

$$3x + y = 7$$

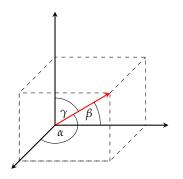




$$\cos \alpha = \frac{\mathbf{v} \cdot \mathbf{i}}{|\mathbf{v}|},$$

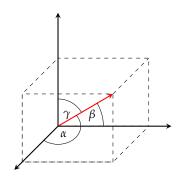


$$\cos \alpha = \frac{\mathbf{v} \cdot \mathbf{i}}{|\mathbf{v}|}, \qquad \cos \beta = \frac{\mathbf{v} \cdot \mathbf{j}}{|\mathbf{v}|}$$



$$\cos \alpha = \frac{\mathbf{v} \cdot \mathbf{i}}{|\mathbf{v}|}, \qquad \cos \beta = \frac{\mathbf{v} \cdot \mathbf{j}}{|\mathbf{v}|}$$

$$\cos \gamma = \frac{\mathbf{v} \cdot \mathbf{k}}{|\mathbf{v}|}$$

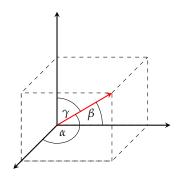


The direction angles associated to a vector \mathbf{v} are shown in the picture at left. They can be computed by

$$\cos \alpha = \frac{\mathbf{v} \cdot \mathbf{i}}{|\mathbf{v}|}, \qquad \cos \beta = \frac{\mathbf{v} \cdot \mathbf{j}}{|\mathbf{v}|}$$

$$\cos \gamma = \frac{\mathbf{v} \cdot \mathbf{k}}{|\mathbf{v}|}$$

The numbers $\cos \alpha$, $\cos \beta$, and $\cos \gamma$ are called the *direction cosines* of **v**.



The direction angles associated to a vector \mathbf{v} are shown in the picture at left. They can be computed by

$$\cos \alpha = \frac{\mathbf{v} \cdot \mathbf{i}}{|\mathbf{v}|}, \qquad \cos \beta = \frac{\mathbf{v} \cdot \mathbf{j}}{|\mathbf{v}|}$$

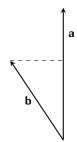
$$\cos \gamma = \frac{\mathbf{v} \cdot \mathbf{k}}{|\mathbf{v}|}$$

The numbers $\cos \alpha$, $\cos \beta$, and $\cos \gamma$ are called the direction cosines of v.

- Find the direction cosines of the vector $\langle 2, 1, 2 \rangle$
- Find the direction cosines of the vector $\langle c, c, c \rangle$ if c > 0.

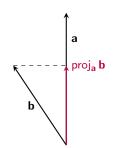
Finally we can use the dot product to find the *vector projection* of a vector ${\bf b}$ onto another vector ${\bf a}$, denoted

proj_a **b**



Finally we can use the dot product to find the vector projection of a vector **b** onto another vector a, denoted

To the left is a visual of what the projection means.

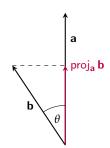


Finally we can use the dot product to find the *vector projection* of a vector ${\bf b}$ onto another vector ${\bf a}$, denoted

To the left is a visual of what the projection means.

The projection of \mathbf{b} onto \mathbf{a} is a vector in the direction of \mathbf{b} having (signed) magnitude

$$\mathsf{comp}_{\mathbf{a}} \, \mathbf{b} = \mathbf{b} \cdot \frac{\mathbf{a}}{|\mathbf{a}|} = |\mathbf{b}| \cos \theta$$



Finally we can use the dot product to find the *vector projection* of a vector ${\bf b}$ onto another vector ${\bf a}$, denoted

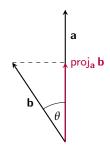
To the left is a visual of what the projection means.

The projection of \mathbf{b} onto \mathbf{a} is a vector in the direction of \mathbf{b} having (signed) magnitude

$$comp_{\mathbf{a}} \mathbf{b} = \mathbf{b} \cdot \frac{\mathbf{a}}{|\mathbf{a}|} = |\mathbf{b}| \cos \theta$$

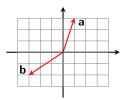
So,

$$\mathsf{proj}_{\mathbf{a}} \, \mathbf{b} = \left(\mathbf{b} \cdot \frac{\mathbf{a}}{|\mathbf{a}|} \right) \frac{\mathbf{a}}{|\mathbf{a}|} = \left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^2} \right) \mathbf{a}$$



Projection Puzzler

$$\mathbf{a}=\langle -5,12 \rangle$$
 $\mathbf{b}=\langle 4,6 \rangle$



Recall the scalar projection

$$\mathsf{comp}_{\mathbf{a}}\,\mathbf{b} = \mathbf{b} \cdot \frac{\mathbf{a}}{|\mathbf{a}|} = |\mathbf{b}|\cos\theta$$

and the vector projection

$$\operatorname{proj}_{\mathbf{a}} \mathbf{b} = \left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^2} \right) \mathbf{a}$$

- 1. Find the scalar and vector projections of $\mathbf{b} = \langle 4, 6 \rangle$ onto $\mathbf{a} = \langle -5, 12 \rangle$
- 2. In the second figure shown, is the scalar projection of **b** onto **a** a positive number, or a negative number?

Dot Products and Work

The work done by a force ${f F}$ acting through a displacement ${f D}$ is

$$W = \mathbf{F} \cdot \mathbf{D}$$

Unit Reminders:

Quantity	Type	MKS Unit	FPS Unit
Force	Vector	Newton	Pound
Displacement	Vector	Meter	Foot
Work	Scalar	Joule (Nt-m)	Foot-pound

A boat sails south with the help of a wind blowing in the direction S $36^{\circ}E$ with magnitude 400 lb. Find the work done by the wind as the boat moves 120 ft.

For Next Time: Determinants

Next time we'll define the *cross product* of two vectors, and we'll need to know how to compute the *determinant* of a 2×2 or 3×3 matrix.

A determinant of order 2 is defined by

$$\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = a_1 b_2 - a_2 b_1$$

Find the following determinants:

$$\begin{vmatrix} 2 & 1 \\ 4 & -6 \end{vmatrix}, \quad \begin{vmatrix} 4 & -6 \\ 2 & 1 \end{vmatrix}, \quad \begin{vmatrix} 1 & 2 \\ 2 & 4 \end{vmatrix}$$

Determinants, Continued

A determinant of order 3 is defined by

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} - a_2 \begin{vmatrix} b_1 & c_3 \\ c_1 & c_3 \end{vmatrix} + a_3 \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix}$$

For an illustration of this formula, see this Khan Academy Video

For a shortcut method that many students like, see this Khan Academy Video