Math 213 - Triple Integrals in Spherical Coordinates

Peter A. Perry

University of Kentucky

November 5, 2018

- Vote in tomorrow's election!
- Re-read section 15.8
- Work on section 15.8, problems 1-37 (odd) from Stewart
- Read section 15.9 for Wednesday, November 7
- Finish webwork C3

Unit III: Multiple Integrals

Lecture 24	Double Integrals over Rectangles
Lecture 25	Double Integrals over General Regions
Lecture 26	Double Integrals in Polar Coodinates
Lecture 27	Applications of Double Integrals
Lecture 28	Surface Area
Lecture 29 Lecture 30 Lecture 31	Triple Integrals Triple Integrals in Cylindrical Coordinates Triple Integrals in Spherical Coordinates
Lecture 32 Lecture 33	Change of Variable in Multiple Integrals, Part I Change of Variable in Multiple Integrals, Part II
Lecture 34	Exam III Review

Goals of the Day

- Know how to locate points and describe regions in spherical coordinates
- Know how to evaluate triple integrals in spherical coordinates

•
$$\rho = \sqrt{x^2 + y^2 + z^2}$$
, the distance $|\overrightarrow{OP}|$

- $\rho = \sqrt{x^2 + y^2 + z^2}$, the distance $|\overrightarrow{OP}|$
- φ, the angle that the vector OP makes with the z-axis

- $\rho = \sqrt{x^2 + y^2 + z^2}$, the distance $|\overrightarrow{OP}|$
- φ, the angle that the vector OP makes with the z-axis
- θ , the angle that the vector $\overrightarrow{OP'}$ makes with the x-axis

Cartesian to Spherical and Back Again

Going over:

$$\rho = \sqrt{x^2 + y^2 + z^2}$$

$$\tan \theta = \frac{y}{x}$$

$$\cos \phi = \frac{z}{\rho}$$

Cartesian to Spherical and Back Again

Going over:

$$\rho = \sqrt{x^2 + y^2 + z^2}$$

$$\tan \theta = \frac{y}{x}$$

$$\cos \phi = \frac{z}{\rho}$$

Coming back:

$$x = \rho \sin \phi \cos \theta$$
$$y = \rho \sin \phi \sin \theta$$
$$z = \rho \cos \phi$$

Cartesian to Spherical and Back Again

Going over:

$$\rho = \sqrt{x^2 + y^2 + z^2}$$

$$\tan \theta = \frac{y}{x}$$

$$\cos \phi = \frac{z}{\rho}$$

Coming back:

$$x = \rho \sin \phi \cos \theta$$
$$y = \rho \sin \phi \sin \theta$$
$$z = \rho \cos \phi$$

- 1. Find the spherical coordinates of the point $(1, \sqrt{3}, 4)$
- 2. Find the cartesian coordinates of the point $(4, \pi/4, \pi/2)$

Regions in Spherical Coordinates

Match each of the following surfaces with its graph in xyz space

- 1. $\theta = c$
- 2. $\rho = 5$
- 3. $\phi = c$, $0 < c < \pi/2$

A Spherical Wedge

The region

$$E = \{(\rho, \theta, \phi) : a \le \rho \le b, \ \alpha \le \theta \le \beta, \ c \le \phi \le d\}$$

is a spherical wedge. What does it look like?

• $a \le \rho \le b$ means the shape lies between spheres of radius a and b

A Spherical Wedge

The region

$$E = \{(\rho, \theta, \phi) : a \le \rho \le b, \alpha \le \theta \le \beta, c \le \phi \le d\}$$

is a spherical wedge. What does it look like?

- $a \le \rho \le b$ means the shape lies between spheres of radius a and b
- $\alpha \leq \theta \leq \beta$ restricts the shape to a wedge-shaped region over the xy plane

A Spherical Wedge

The region

$$E = \{(\rho, \theta, \phi) : a \le \rho \le b, \alpha \le \theta \le \beta, c \le \phi \le d\}$$

is a spherical wedge. What does it look like?

- $a \le \rho \le b$ means the shape lies between spheres of radius a and b
- α ≤ θ ≤ β restricts the shape to a wedge-shaped region over the xy plane
- c ≤ φ ≤ d restricts the shape to the space between two cones about the z-axis

Describing Regions in Spherical Coordinates

Can you sketch each of these regions?

1.
$$0 \le \rho \le 1$$
, $0 \le \phi \le \pi/6$, $0 \le \theta \le \pi$

2.
$$1 \le \rho \le 2$$
, $\pi/2 \le \phi \le \pi$

3.
$$2 \le \rho \le 4$$
, $0 \le \phi \le \pi/3$, $0 \le \theta \le \pi$

We need to find the volume of a small spherical wedge

Volume comes from

dV =

We need to find the volume of a small spherical wedge

Volume comes from

• Change in ρ

$$dV = d\rho$$

We need to find the volume of a small spherical wedge

Volume comes from

- Change in ho
- Change in ϕ

$$dV = \rho \, d\rho \, d\phi$$

We need to find the volume of a small spherical wedge

Volume comes from

- Change in ρ
- Change in ϕ
- Change in θ

$$dV = \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta$$

$$\iint_{E} f(x, y, z) dV =$$

$$\int_{c}^{d} \int_{\alpha}^{\beta} \int_{a}^{b} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^{2} \sin \phi d\rho d\theta d\phi$$

if E is a spherical wedge

$$E = \{(\rho, \theta, \phi) : a \le \rho \le b, \ \alpha \le \theta \le \beta, \ c \le \phi \le d\}$$

- 1. Find $\iiint_E y^2 z^2 \, dV$ if E is the region above the cone $\phi = \pi/3$ and below the sphere $\rho = 1$
- 2. Find $\iiint_E y^2 dV$ if E is the solid hemisphere $x^2 + y^2 + z^2 \le 9$, $y \ge 0$
- 3. Find $\iiint_E \sqrt{x^2+y^2+z^2} \, dV$ if E lies above the cone $z=\sqrt{x^2+y^2}$ and between the spheres $\rho=1$ and $\rho=2$