Math 213 - Triple Integrals in Spherical Coordinates

Peter A. Perry

University of Kentucky

November 5, 2018

Homework

- Vote in tomorrow's election!
- Re-read section 15.8
- Work on section 15.8, problems 1-37 (odd) from Stewart
- Read section 15.9 for Wednesday, November 7
- Finish webwork C3

Unit III: Multiple Integrals

Lecture 24 Double Integrals over Rectangles
Lecture 25 Double Integrals over General Regions
Lecture 26 Double Integrals in Polar Coodinates
Lecture 27 Applications of Double Integrals
Lecture 28 Surface Area

Lecture 29 Triple Integrals
Lecture 30 Triple Integrals in Cylindrical Coordinates
Lecture 31 Triple Integrals in Spherical Coordinates
Lecture 32 Change of Variable in Multiple Integrals, Part I
Lecture 33 Change of Variable in Multiple Integrals, Part II
Lecture 34 Exam III Review

Goals of the Day

- Know how to locate points and describe regions in spherical coordinates
- Know how to evaluate triple integrals in spherical coordinates

Spherical Coordinates

The spherical coordinates (ρ, θ, ϕ) of a point P in three-dimensional space with projection P^{\prime} on the $x y$-plane are:

Spherical Coordinates

The spherical coordinates (ρ, θ, ϕ) of a point P in three-dimensional space with projection P^{\prime} on the $x y$-plane are:

- $\rho=\sqrt{x^{2}+y^{2}+z^{2}}$, the distance
$|\overrightarrow{O P}|$

Spherical Coordinates

The spherical coordinates (ρ, θ, ϕ) of a point P in three-dimensional space with projection P^{\prime} on the $x y$-plane are:

- $\rho=\sqrt{x^{2}+y^{2}+z^{2}}$, the distance
$|\overrightarrow{O P}|$
- ϕ, the angle that the vector $\overrightarrow{O P}$ makes with the z-axis

Spherical Coordinates

The spherical coordinates (ρ, θ, ϕ) of a point P in three-dimensional space with projection P^{\prime} on the $x y$-plane are:

- $\rho=\sqrt{x^{2}+y^{2}+z^{2}}$, the distance
$|\overrightarrow{O P}|$
- ϕ, the angle that the vector $\overrightarrow{O P}$ makes with the z-axis
- θ, the angle that the vector $\overrightarrow{O P^{\prime}}$ makes with the x-axis

Cartesian to Spherical and Back Again

Going over:

$$
\begin{aligned}
\rho & =\sqrt{x^{2}+y^{2}+z^{2}} \\
\tan \theta & =\frac{y}{x} \\
\cos \phi & =\frac{z}{\rho}
\end{aligned}
$$

Cartesian to Spherical and Back Again

Going over:

$$
\begin{aligned}
\rho & =\sqrt{x^{2}+y^{2}+z^{2}} \\
\tan \theta & =\frac{y}{x} \\
\cos \phi & =\frac{z}{\rho}
\end{aligned}
$$

Coming back:

$$
\begin{aligned}
& x=\rho \sin \phi \cos \theta \\
& y=\rho \sin \phi \sin \theta \\
& z=\rho \cos \phi
\end{aligned}
$$

Cartesian to Spherical and Back Again

Going over:

$$
\begin{aligned}
\rho & =\sqrt{x^{2}+y^{2}+z^{2}} \\
\tan \theta & =\frac{y}{x} \\
\cos \phi & =\frac{z}{\rho}
\end{aligned}
$$

Coming back:

$$
\begin{aligned}
& x=\rho \sin \phi \cos \theta \\
& y=\rho \sin \phi \sin \theta \\
& z=\rho \cos \phi
\end{aligned}
$$

1. Find the spherical coordinates of the point $(1, \sqrt{3}, 4)$
2. Find the cartesian coordinates of the point $(4, \pi / 4, \pi / 2)$

Regions in Spherical Coordinates

Match each of the following surfaces with its graph in $x y z$ space

1. $\theta=c$
2. $\rho=5$
3. $\phi=c, \quad 0<c<\pi / 2$

A Spherical Wedge

The region

$$
E=\{(\rho, \theta, \phi): a \leq \rho \leq b, \alpha \leq \theta \leq \beta, c \leq \phi \leq d\}
$$

is a spherical wedge. What does it look like?

- $a \leq \rho \leq b$ means the shape lies between spheres of radius a and b

A Spherical Wedge

The region

$$
E=\{(\rho, \theta, \phi): a \leq \rho \leq b, \alpha \leq \theta \leq \beta, c \leq \phi \leq d\}
$$

is a spherical wedge. What does it look like?

- $a \leq \rho \leq b$ means the shape lies between spheres of radius a and b
- $\alpha \leq \theta \leq \beta$ restricts the shape to a wedge-shaped region over the $x y$ plane

A Spherical Wedge

The region

$$
E=\{(\rho, \theta, \phi): a \leq \rho \leq b, \alpha \leq \theta \leq \beta, c \leq \phi \leq d\}
$$

is a spherical wedge. What does it look like?

- $a \leq \rho \leq b$ means the shape lies between spheres of radius a and b
- $\alpha \leq \theta \leq \beta$ restricts the shape to a wedge-shaped region over the $x y$ plane
- $c \leq \phi \leq d$ restricts the shape to the space between two cones about the z-axis

Describing Regions in Spherical Coordinates

Can you sketch each of these regions?

1. $0 \leq \rho \leq 1, \quad 0 \leq \phi \leq \pi / 6, \quad 0 \leq \theta \leq \pi$
2. $1 \leq \rho \leq 2, \quad \pi / 2 \leq \phi \leq \pi$
3. $2 \leq \rho \leq 4, \quad 0 \leq \phi \leq \pi / 3, \quad 0 \leq \theta \leq \pi$

Triple Integrals in Spherical Coordinates

We need to find the volume of a small spherical wedge

Volume comes from

$$
d V=
$$

Triple Integrals in Spherical Coordinates

We need to find the volume of a small spherical wedge

Volume comes from

- Change in ρ

$$
d V=d \rho
$$

Triple Integrals in Spherical Coordinates

We need to find the volume of a small spherical wedge

Volume comes from

- Change in ρ
- Change in ϕ

$$
d V=\rho d \rho d \phi
$$

Triple Integrals in Spherical Coordinates

We need to find the volume of a small spherical wedge
Volume comes from

- Change in ρ
- Change in ϕ
- Change in θ

$$
d V=\rho^{2} \sin \phi d \rho d \phi d \theta
$$

Triple Integrals in Spherical Coordinates

$$
\begin{aligned}
& \iint_{E} f(x, y, z) d V= \\
& \quad \int_{c}^{d} \int_{\alpha}^{\beta} \int_{a}^{b} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^{2} \sin \phi d \rho d \theta d \phi
\end{aligned}
$$

if E is a spherical wedge

$$
E=\{(\rho, \theta, \phi): a \leq \rho \leq b, \alpha \leq \theta \leq \beta, c \leq \phi \leq d\}
$$

1. Find $\iiint_{E} y^{2} z^{2} d V$ if E is the region above the cone $\phi=\pi / 3$ and below the sphere $\rho=1$
2. Find $\iiint_{E} y^{2} d V$ if E is the solid hemisphere $x^{2}+y^{2}+z^{2} \leq 9, y \geq 0$
3. Find $\iiint_{E} \sqrt{x^{2}+y^{2}+z^{2}} d V$ if E lies above the cone $z=\sqrt{x^{2}+y^{2}}$ and between the spheres $\rho=1$ and $\rho=2$
