Math 213 - Change of Variables in Double Integrals

Peter A. Perry
University of Kentucky
November 7, 2018

Homework

- Re-read section 15.9
- Work on section 15.9, problems 1-37 (odd) from Stewart
- Prepare for Thursday's quiz on sections 15.6-15.8 (triple integrals, coordinates)
- Finish webwork C3 for tonight!

Unit III: Multiple Integrals

Lecture 24 Double Integrals over Rectangles
Lecture 25 Double Integrals over General Regions
Lecture 26 Double Integrals in Polar Coodinates
Lecture 27 Applications of Double Integrals
Lecture 28 Surface Area

Lecture 29 Triple Integrals
Lecture 30 Triple Integrals in Cylindrical Coordinates
Lecture 31 Triple Integrals in Spherical Coordinates
Lecture 32 Change of Variable in Multiple Integrals, Part I
Lecture 33 Change of Variable in Multiple Integrals, Part II
Lecture 34 Exam III Review

Goals of the Day

- Understand what a transformation T between two regions in the plane is
- Understand how to compute the Jacobian Matrix and Jacobian determinant of a transformation and understand what the Jacobian determinant measures
- Understand how to compute double integrals using the change of variables formula

Preview: Calculus I versus Calculus III

If $x=g(u)$ maps $[c, d]$ to $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=\int_{c}^{d} f(g(u)) g^{\prime}(u) d u
$$

In other words,

$$
\int_{a}^{b} f(x) d x=\int_{c}^{d} f(x(u)) \frac{d x}{d u} d u
$$

If $x=g(u, v), y=h(u, v)$, and if the region S in the $u v$ plane is mapped to the region R in the xy plane, then

$$
\iint_{R} f(x, y) d A=\iint_{S} f(x(u, v), y(u, v)) J(u, v) d u d v
$$

The Jacobian determinant

$$
J(u, v)=\left|\frac{\partial(x, y)}{\partial(u, v)}\right|
$$

measures how areas change under the map $(u, v) \mapsto(x, y)$.

Transformations

The polar coordinate map

$$
x=r \cos \theta, \quad y=r \sin \theta
$$

defines a transformation $T: S \rightarrow R$
Before, we called R a polar rectangle
Here are the corresponding sides of the rectangle in the $r \theta$ plane and the polar rectangle in the $x y$ plane:

Transformations

The polar coordinate map

$$
x=r \cos \theta, \quad y=r \sin \theta
$$

defines a transformation $T: S \rightarrow R$
Before, we called R a polar rectangle
Here are the corresponding sides of the rectangle in the $r \theta$ plane and the polar rectangle in the $x y$ plane:

- The line $r=a$

Transformations

The polar coordinate map

$$
x=r \cos \theta, \quad y=r \sin \theta
$$

defines a transformation $T: S \rightarrow R$
Before, we called R a polar rectangle
Here are the corresponding sides of the rectangle in the $r \theta$ plane and the polar rectangle in the $x y$ plane:

- The line $r=a$
- The line $\theta=\alpha$

Transformations

The polar coordinate map

$$
x=r \cos \theta, \quad y=r \sin \theta
$$

defines a transformation $T: S \rightarrow R$
Before, we called R a polar rectangle
Here are the corresponding sides of the rectangle in the $r \theta$ plane and the polar rectangle in the $x y$ plane:

- The line $r=a$
- The line $\theta=\alpha$
- The line $r=b$

Transformations

The polar coordinate map

$$
x=r \cos \theta, \quad y=r \sin \theta
$$

defines a transformation $T: S \rightarrow R$
Before, we called R a polar rectangle
Here are the corresponding sides of the rectangle in the $r \theta$ plane and the polar rectangle in the $x y$ plane:

- The line $r=a$
- The line $\theta=\alpha$
- The line $r=b$
- The line $\theta=\beta$

Transformations

The polar coordinate map

$$
x=u \cos v, \quad y=u \sin v
$$

defines a transformation $T: S \rightarrow R$
Before, we called R a polar rectangle
Here are the corresponding sides of the rectangle in the $u \theta$ plane and the polar rectangle in the $x y$ plane:

Transformations

The polar coordinate map

$$
x=u \cos v, \quad y=u \sin v
$$

defines a transformation $T: S \rightarrow R$
Before, we called R a polar rectangle
Here are the corresponding sides of the rectangle in the $u \theta$ plane and the polar rectangle in the $x y$ plane:

- The line $u=a$

Transformations

The polar coordinate map

$$
x=u \cos v, \quad y=u \sin v
$$

defines a transformation $T: S \rightarrow R$
Before, we called R a polar rectangle
Here are the corresponding sides of the rectangle in the $u \theta$ plane and the polar rectangle in the $x y$ plane:

- The line $u=a$
- The line $v=\alpha$

Transformations

The polar coordinate map

$$
x=u \cos v, \quad y=u \sin v
$$

defines a transformation $T: S \rightarrow R$
Before, we called R a polar rectangle
Here are the corresponding sides of the rectangle in the $u \theta$ plane and the polar rectangle in the $x y$ plane:

- The line $u=a$
- The line $v=\alpha$
- The line $u=b$

Transformations

The polar coordinate map

$$
x=u \cos v, \quad y=u \sin v
$$

defines a transformation $T: S \rightarrow R$
Before, we called R a polar rectangle
Here are the corresponding sides of the rectangle in the $u \theta$ plane and the polar rectangle in the $x y$ plane:

- The line $u=a$
- The line $v=\alpha$
- The line $u=b$
- The line $v=\beta$

Transformations

The equations

Transformations

The equations

$$
x=u^{2}-v^{2}, \quad y=2 u v
$$

defines a transformation $T: S \rightarrow R$

- $v=0,0 \leq u \leq 1$ maps to $0 \leq x \leq 1, y=0$

Transformations

The equations

$$
x=u^{2}-v^{2}, \quad y=2 u v
$$

defines a transformation $T: S \rightarrow R$

- $v=0,0 \leq u \leq 1$ maps to $0 \leq x \leq 1, y=0$
- $u=1,0 \leq v \leq 1$ maps to the parametric curve $x=1-v^{2}, y=2 v$

Transformations

The equations

$$
x=u^{2}-v^{2}, \quad y=2 u v
$$

defines a transformation $T: S \rightarrow R$

- $v=0,0 \leq u \leq 1$ maps to $0 \leq x \leq 1, y=0$
- $u=1,0 \leq v \leq 1$ maps to the parametric curve $x=1-v^{2}, y=2 v$
- $v=1,0 \leq u \leq 1$ maps to the parametric curve $x=u^{2}-1, y=2 u$

Transformations

The equations

$$
x=u^{2}-v^{2}, \quad y=2 u v
$$

defines a transformation $T: S \rightarrow R$

- $v=0,0 \leq u \leq 1$ maps to $0 \leq x \leq 1, y=0$
- $u=1,0 \leq v \leq 1$ maps to the parametric curve $x=1-v^{2}, y=2 v$
- $v=1,0 \leq u \leq 1$ maps to the parametric curve $x=u^{2}-1, y=2 u$
- $u=0,0 \leq v \leq 1$ maps to

$$
-1 \leq x \leq 0, y=0
$$

Transformations

1. Find the image of

$$
S=\{(u, v): 0 \leq u \leq 3,0 \leq v \leq 2\}
$$

under the transformation $x=2 u+3 v, y=u-v$
2. Find the image of the disc $u^{2}+v^{2} \leq 1$ under the transformation $x=a u$, $y=b v$

The Jacobian

In one variable calculus, the way a transformation $x=g(u)$ changes lengths of interals is measured by $g^{\prime}(u)$:

$$
\Delta x=g^{\prime}(u) \Delta u
$$

In two variable calculus, the way a transformation

$$
x=g(u, v), \quad y=h(u, v)
$$

changes areas is measured by the Jacobian determinant

$$
J(u, v)=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial x} & \frac{\partial y}{\partial v}
\end{array}\right|, \quad \Delta A=|J(u, v)| \Delta u \Delta v
$$

We'll now see why this is the case...

The Jacobian

A transformation $x=g(u, v), y=h(u, v)$ maps a small rectangle S into a distorted rectangle R through the rule

$$
\mathbf{r}(u, v)=g(u, v) \mathbf{i}+h(u, v) \mathbf{j}
$$

The Jacobian

A transformation $x=g(u, v), y=h(u, v)$ maps a small rectangle S into a distorted rectangle R through the rule

$$
\mathbf{r}(u, v)=g(u, v) \mathbf{i}+h(u, v) \mathbf{j}
$$

R has approximate area $\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| \Delta u \Delta v$ where

$$
\mathbf{r}_{u}=\frac{\partial x}{\partial u} \mathbf{i}+\frac{\partial y}{\partial u} \mathbf{j}, \quad \mathbf{r}_{v}=\frac{\partial x}{\partial v} \mathbf{i}+\frac{\partial y}{\partial v} \mathbf{j}
$$

The Jacobian

R has approximate area $\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| \Delta u \Delta v$ where

$$
\mathbf{r}_{u}=\frac{\partial x}{\partial u} \mathbf{i}+\frac{\partial y}{\partial u} \mathbf{j}, \quad \mathbf{r}_{v}=\frac{\partial x}{\partial v} \mathbf{i}+\frac{\partial y}{\partial v} \mathbf{j}
$$

Compute

$$
\mathbf{r}_{u} \times \mathbf{r}_{v}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} & 0 \\
\frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & 0
\end{array}\right|=\frac{\partial x}{\partial u} \frac{\partial y}{\partial v}-\frac{\partial x}{\partial v} \frac{\partial y}{\partial u}
$$

The Jacobian

The area of R is approximately

$$
d A \simeq\left|\frac{\partial(x, y)}{\partial(u, v)}\right| \Delta u \Delta v
$$

where

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|
$$

is the Jacobian determinant of the transformation

The Jacobian

Find the Jacobian determinant of the following transformations.

1. $x=2 u+3 v, y=u-v$
2. $x=a u, y=b v$
3. $x=u^{2}-v^{2}, y=2 u v$

Area Change in Polar Coordinates

Consider the transformation $x=u \cos v, \quad y=u \sin v$

$$
\left(\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right)=\left(\begin{array}{cc}
\cos (v) & -u \sin (v) \\
\sin (v) & u \cos (v)
\end{array}\right)
$$

So

$$
J(u, v)=\left|\begin{array}{cc}
\cos (v) & \sin (v) \\
-u \sin (v) & u \cos (v)
\end{array}\right|=u
$$

Change of Variables Formula

If the transformation $x=g(u, v), y=h(u, v)$ maps a region S in the $u v$-plane to a region R in the $x y$ plane:

$$
\begin{aligned}
\iint_{R} f(x, y) d A & \simeq \sum_{i=1}^{n} \sum_{j=1}^{n} f\left(x_{i}, y_{j}\right) \Delta A \\
& \simeq \sum_{i=1}^{n} \sum_{j=1}^{n} f\left(g\left(u_{i}, v_{j}\right), h\left(u_{i}, v_{j}\right)\right)\left|\frac{\partial(x, y)}{\partial(u, v)}\right| \Delta u \Delta v \\
& \iint_{S} f(g(u, v), h(u, v))\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v
\end{aligned}
$$

Change of Variables in a Double Integral If T is a one-to-one transformation with nonzero Jacobian and $T: S \rightarrow R$, then

$$
\iint_{R} f(x, y) d A=\iint_{S} f(x(u, v), y(u, v))\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v
$$

Change of Variables Formula

Change of Variables in a Double Integral If T is a one-to-one transformation with nonzero Jacobian and $T: S \rightarrow R$, then

$$
\iint_{R} f(x, y) d A=\iint_{S} f(x(u, v), y(u, v))\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v
$$

1. Use the transformation $x=2 u+v, y=u+2 v$ to find $\iint_{R}(x-3 y) d A$ if R is the triangular region with vertices $(0,0),(2,1)$ and 1,2$)$
2. FInd $\iint_{R}(x+y) e^{x^{2}-y^{2}} d A$ if R is the rectangle enclosed by $x-y=0$, $x-y=2, x+y=0$, and $x+y=3$.
