Math 213 - Change of Variables in Triple Integrals

Peter A. Perry

University of Kentucky

November 9, 2018

Homework

- Re-rre-ead section 15.9
- Finish work on section 15.9, problems 1-37 (odd) from Stewart
- Begin reviewing for your exam, Wednesday, November 14

Unit III: Multiple Integrals

Lecture 24 Double Integrals over Rectangles
Lecture 25 Double Integrals over General Regions
Lecture 26 Double Integrals in Polar Coodinates
Lecture 27 Applications of Double Integrals
Lecture 28 Surface Area

Lecture 29 Triple Integrals
Lecture 30 Triple Integrals in Cylindrical Coordinates
Lecture 31 Triple Integrals in Spherical Coordinates
Lecture 32 Change of Variable in Multiple Integrals, Part I
Lecture 33 Change of Variable in Multiple Integrals, Part II
Lecture 34 Exam III Review

Goals of the Day

- Understand what a transformation T between two regions in space is
- Understand how to compute the Jacobian Matrix and Jacobian determinant of a transformation and understand what the Jacobian determinant measures
- Understand how to compute triple integrals using the change of variables formula

Change of Variable: $u v \rightarrow x y$

If $x=g(u, v), y=h(u, v)$, and if the region S in the $u v$ plane is mapped to the region R in the $x y$ plane, then

$$
\iint_{R} f(x, y) d A=\iint_{S} f(x(u, v), y(u, v))\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v
$$

The Jacobian determinant

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|
$$

measures how areas change under the map $(u, v) \mapsto(x, y)$. We get the change of variables formula

Change of Variable: $u v w$ to $x y z$

If

$$
x=g(u, v, w), \quad y=h(u, v, w), \quad z=k(u, v, w)
$$

and the region S in $u v w$ space is mapped to R in $x y z$ space, then

$$
\begin{aligned}
& \iiint_{R} f(x, y, z) d V= \\
& \quad \iiint_{S} f(x(u, v, w), y(u, v, w), z(u, v, w))\left|\frac{\partial(x, y, z)}{\partial(u, v, w)}\right| d u d v d w
\end{aligned}
$$

where

$$
\frac{\partial(x, y, z)}{\partial(u, v, w)}=\left|\begin{array}{lll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\
\frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w}
\end{array}\right|
$$

Cylindrical and Spherical Coordinates

Recall that the Jacobian determinant is

$$
\frac{\partial(x, y, z)}{\partial(u, v, w)}=\left|\begin{array}{lll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\
\frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w}
\end{array}\right|
$$

Find the Jacobian determinant if:
(1) $x=u \cos v, \quad y=u \sin v, \quad z=w$ (cylindrical)
(2) $x=u \sin w \cos v, \quad y=u \sin w \sin v, \quad z=u \cos w$ (spherical)

What's the connection with these formulas and formulas for integration in cylindrical and spherical coordinates?

Polar Coordinates

The transformation

$$
x=u \cos v, y=u \sin v
$$

maps a rectangle S in the $u v$ plane to a polar rectangle R in the xy plane The Jacobian of this transformation is

$$
\left|\begin{array}{cc}
\cos v & -u \sin v \\
\sin v & u \cos v
\end{array}\right|=u
$$

Polar Coordinates

The transformation

$$
x=u \cos v, y=u \sin v
$$

maps a rectangle S in the $u v$ plane to a polar rectangle R in the xy plane The Jacobian of this transformation is

$$
\left|\begin{array}{cc}
\cos v & -u \sin v \\
\sin v & u \cos v
\end{array}\right|=u
$$

Polar Coordinates

The transformation

$$
x=u \cos v, y=u \sin v
$$

maps a rectangle S in the $u v$ plane to a polar rectangle R in the xy plane The Jacobian of this transformation is

$$
\left|\begin{array}{cc}
\cos v & -u \sin v \\
\sin v & u \cos v
\end{array}\right|=u
$$

Polar Coordinates

The transformation

$$
x=u \cos v, y=u \sin v
$$

maps a rectangle S in the $u v$ plane to a polar rectangle R in the xy plane The Jacobian of this transformation is

$$
\left|\begin{array}{cc}
\cos v & -u \sin v \\
\sin v & u \cos v
\end{array}\right|=u
$$

Polar Coordinates

The transformation

$$
x=u \cos v, y=u \sin v
$$

maps a rectangle S in the $u v$ plane to a polar rectangle R in the xy plane The Jacobian of this transformation is

$$
\left|\begin{array}{cc}
\cos v & -u \sin v \\
\sin v & u \cos v
\end{array}\right|=u
$$

Cylindrical Coordinates

The transformation

$$
x=u \cos v, \quad y=u \sin v, \quad z=w
$$

maps a box in the $u v w$ plane to a 'cylindrical wedge' in xyz space

The Jacobian of this transformation is

$$
\left|\begin{array}{ccc}
\cos v & -u \sin v & 0 \\
\sin v & u \cos v & 0 \\
0 & 0 & 1
\end{array}\right|=u
$$

Spherical Coordinates

The transformation

$$
\begin{aligned}
& x=u \sin (w) \cos (v) \\
& y=u \sin (w) \sin (v) \\
& z=u \cos (w)
\end{aligned}
$$

maps a box in the $u v w$ plane to a 'spherical wedge' in xyz space

The Jacobian of this transformation is

$$
u^{2} \sin (w)
$$

Volume of an Ellipsoid

Find the volume enclosed by the ellipsoid

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

using the transformation

$$
x=a u, \quad y=b v, \quad z=c w
$$

