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Homework

• Prepare to Ace Exam III

• Finish Webwork C4

• Read Sections 16.1 and 16.2 for Friday

• Work on Stewart problems for 16.1 and 16.2:

16.1: 11-18, 21, 23, 25, 29-32, 33
16.2: 1-21 (odd), 33-41 (odd), 49, 50
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Unit IV: Vector Calculus

Lecture 35 Vector Fields
Lecture 36 Line Integrals
Lecture 37 Line Integrals
Lecture 38 Fundamental Theorem
Lecture 39 Green’s Theorem
Lecture 40 Curl and Divergence
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Goals of the Day

• Understand and Visualize Vector Fields

• Know what the gradient vector field of a function is

• Preview line integrals
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Vector Fields in the Plane

A vector field is a function that associates to each (x , y) a vector

F(x , y) = P(x , y)i + Q(x , y)j

We can visualize a vector field by a field plot
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The Gradient Vector Field

If f (x , y) is a function two variables, the gradient vector field

∇f (x , y) =
∂f

∂x
(x , y)i +

∂f

∂y
j

moves in the direction of greatest change of f
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The Gradient Vector Field

If f (x , y) is a function two variables, the gradient vector field

∇f (x , y) =
∂f

∂x
(x , y)i +

∂f

∂y
j

moves in the direction of greatest change of f
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Mix and Match
Can you match the vector field with its field plot?

A F(x , y ) = 〈x ,−y 〉 B F(x , y ) = 〈y , x − y 〉
C F(x , y ) = 〈y , y + 2〉 D F(x , y ) = 〈cos(x + y ), x〉
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Vector Fields in Space
A vector field in space is a function that associates to each (x , y , z) a vector

F(x , y , z) = P(x , y , z)i + Q(x , y , z)j + R(x , y , z)k

We can visualize a vector field by a field plot

−1 −0.5 0
0.5

1−1

0

1

−1

0

1

F(x , y , z) = x i + y j + zk



Learning Goals Vector Fields in the Plane Vector Fields in Space Line Integrals I Line Integrals II

Vector Fields in Space
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Vector Fields in Physics

1. The electric field generated by a point charge q at the origin is

E(x) =
qx

|x|3

2. The gravitational force exerted on a mass m at position x by a mass M at
the origin is

F(x) = −GMmx

|x|3

3. A conservative force F is the gradient of a potential function ϕ, i.e.,

F = ∇φ
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Preview: Line Integrals

Our next topic will be integrals of scalar functions and vector functions over
curves in the plane and in space. If C is a curve in the plane or in space, we’ll
learn how to compute:

•
∫
C f (x , y) ds, the integral of a scalar function over a plane curve C

•
∫
C F · dr, the integal of a vector function F(x , y) over a plane curve C

•
∫
C f (x , y , z) ds, the integral of a scalar function over a space curve C

•
∫
C F · dr, the integral of a vector function F(x , y , z) over a space curve C

In all cases, we’ll reduce these to Calculus I and II type integrals by
parameterizing the curve C . We’ll also learn how to compute integrals like

•
∫
C f (x , y) dx

•
∫
C f (x , y) dy
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The Integral of a Scalar Function over a Plane Curve

If C is a plane curve, the line integral of f along C is∫
C

f (x , y) ds = lim
n→∞

n

∑
i=1

f (x∗i , y∗i )∆si

where we approximate the curve by n line segments of length ∆si

As a practical matter, if C is parameterized by (x(t), y(t)) for a ≤ t ≤ b,

ds =

√(
dx

dt

)2

+

(
dy

dt

)2

dt

so ∫
C

f (x , y) ds =
∫ b

a
f (x(t), y(t))

√(
dx

dt

)2

+

(
dy

dt

)2

dt
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The Integral of a Scalar Function over a Plane Curve

if C is parameterized by (x(t), y(t)) for a ≤ t ≤ b, then

∫
C

f (x , y) ds =
∫ b

a
f (x(t), y(t))

√(
dx

dt

)2

+

(
dy

dt

)2

dt

1. Find
∫
C (x/y) ds if C is the curve x = t2, y = 2t for 0 ≤ t ≤ 3

2. Find
∫
C xy4 ds if C is the right half of the circle x2 + y2 = 16
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Line Integrals over Piecewise Smooth Curves

1−1

1−1

A curve C is piecewise smooth if it is a
union of smooth curves C1, . . . Cn. Some
examples are shown at left.

If C consists of seveal smooth compo-
nents, then∫

C
f (x , y) ds =

n

∑
i=1

∫
Ci

f (x , y) ds

Notice that each of these curves has
an orientation that determines how the
curve is parameterized–the parameteri-
zation should “follow the arrows.”

1. Find
∫
C xy ds if C is the first

curve shown at left.
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Another Kind of Line Integral

For later use, we’ll also need the line integral of f with respect to x and the
line integral of f with respect to y :

∫
C

f (x , y) dx =
∫ b

a
f (x(t), y(t))x ′(t) dt

∫
C

f (x , y) dy =
∫ b

a
f (x(t), y(t))y ′(t) dt

1. Find
∫
C ex dx if C is the arc of the curve x = y3 from (−1,−1) to (1, 1)

2. Find
∫
C x2 dx + y2 dy if C is the arc of the circle x2 + y2 = 4 from (2, 0)

to (0, 2) followed by the line segment from (0, 2) to (4, 3)
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Summary of Line Integrals in the Plane

If C is a parameterized curve (x(t), y(t)) where a ≤ t ≤ b:

∫
C

f (x , y) dx =
∫ b

a
f (x(t), y(t))x ′(t) dt

∫
C

f (x , y) dy =
∫ b

a
f (x(t), y(t))y ′(t) dt

∫
C

f (x , y) ds =
∫ b

a
f (x(t), y(t))

√
(x ′(t)2 + y ′(t)2 dt
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Line Integrals in Space

If C is a space curve (x(t), y(t), z(t)) where a ≤ t ≤ b, then∫
C

f (x , y , z) ds =
∫ b

a
f (x(t), y(t), z(t))

√
(x ′(t))2 + (y ′(t))2 + (z ′(t))2 dt

1. Find
∫
C (x

2 + y2 + z2) ds if C is the space curve
(x(t), y(t), z(t)) = (t, cos 2t, sin 2t) for 0leqt ≤ 2π
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More Line Integrals in Space

Can you guess how to define
∫
C f (x , y , z) dx ,

∫
C f (x , y , z) dy , and∫

C f (x , y , z) dz?

1. Find
∫
C (x + z) dx +

∫
C (x + z) dy +

∫
C (x + y) dz if C consists of the

line segments from (0, 0, 0) to (1, 0, 1) and from (1, 0, 1) to (0, 1, 2)
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