Math 213 - Line Integrals

Peter A. Perry

University of Kentucky

November 16, 2018

Homework

- Re-Read Section 16.2 for Monday
- Work on Stewart problems for 16.2: 1-21 (odd), 33-41 (odd), 49, 50
- Begin Webwork D1

Unit IV: Vector Calculus

Lecture 35 Vector Fields
Lecture 36 Line Integrals
Lecture 37 Line Integrals
Lecture 38 Fundamental Theorem
Lecture 39 Green's Theorem
Lecture 40 Curl and Divergence

Goals of the Day

- Know how to compute line integrals of a scalar function in the plane
- Know how to compute line integrals of a scalar function in space

Preview: Line Integrals

Our next topic will be integrals of scalar functions and vector functions over curves in the plane and in space. If C is a curve in the plane or in space, we'll learn how to compute:

- $\int_{C} f(x, y) d s$, the integral of a scalar function over a plane curve C
- $\int_{C} f(x, y, z) d s$, the integral of a scalar function over a space curve C
- $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, the integal of a vector function $\mathbf{F}(x, y)$ over a plane curve C
- $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, the integral of a vector function $\mathbf{F}(x, y, z)$ over a space curve C

In all cases, we'll reduce these to Calculus I and II type integrals by parameterizing the curve C. We'll also learn how to compute integrals like

- $\int_{C} f(x, y) d x$
- $\int_{C} f(x, y) d y$

Parameterizing Paths

Parameterize the following paths:

1. The first planar path shown on the left
2. The second planar path shown on the left
3. The path connecting $(0,0,0)$ to $(1,0,1)$
4. The path connecting $(1,0,1)$ to $(1,2,0)$

The Integral of a Scalar Function over a Plane Curve

If C is a plane curve, the line integral of f along C is

$$
\int_{C} f(x, y) d s=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}, y_{i}^{*}\right) \Delta s_{i}
$$

where we approximate the curve by n line segments of length Δs_{i}
As a practical matter, if C is parameterized by $(x(t), y(t))$ for $a \leq t \leq b$,

$$
d s=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

so

$$
\int_{C} f(x, y) d s=\int_{a}^{b} f(x(t), y(t)) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

The Integral of a Scalar Function over a Plane Curve

if C is parameterized by $(x(t), y(t))$ for $a \leq t \leq b$, then

$$
\int_{C} f(x, y) d s=\int_{a}^{b} f(x(t), y(t)) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

1. Find $\int_{C}(x / y) d s$ if C is the curve $x=t^{2}, y=2 t$ for $0 \leq t \leq 3$
2. Find $\int_{C} x y^{4} d s$ if C is the right half of the circle $x^{2}+y^{2}=16$

Line Integrals over Piecewise Smooth Curves

A curve C is piecewise smooth if it is a union of smooth curves $C_{1}, \ldots C_{n}$. Some examples are shown at left.

If C consists of seveal smooth components, then

$$
\int_{C} f(x, y) d s=\sum_{i=1}^{n} \int_{C_{i}} f(x, y) d s
$$

Notice that each of these curves has an orientation that determines how the curve is parameterized-the parameterization should "follow the arrows."

1. Find $\int_{C} x y d s$ if C is the first curve shown at left.

Another Kind of Line Integral

For later use, we'll also need the line integral of f with respect to x and the line integral of f with respect to y :

$$
\begin{aligned}
& \int_{C} f(x, y) d x=\int_{a}^{b} f(x(t), y(t)) x^{\prime}(t) d t \\
& \int_{C} f(x, y) d y=\int_{a}^{b} f(x(t), y(t)) y^{\prime}(t) d t
\end{aligned}
$$

1. Find $\int_{C} e^{x} d x$ if C is the arc of the curve $x=y^{3}$ from $(-1,-1)$ to $(1,1)$
2. Find $\int_{C} x^{2} d x+y^{2} d y$ if C is the arc of the circle $x^{2}+y^{2}=4$ from $(2,0)$ to $(0,2)$ followed by the line segment from $(0,2)$ to $(4,3)$

Summary of Line Integrals in the Plane

If C is a parameterized curve $(x(t), y(t))$ where $a \leq t \leq b$:

$$
\begin{aligned}
& \int_{C} f(x, y) d x=\int_{a}^{b} f(x(t), y(t)) x^{\prime}(t) d t \\
& \int_{C} f(x, y) d y=\int_{a}^{b} f(x(t), y(t)) y^{\prime}(t) d t \\
& \int_{C} f(x, y) d s=\int_{a}^{b} f(x(t), y(t)) \sqrt{\left(x^{\prime}(t)^{2}+y^{\prime}(t)^{2}\right.} d t
\end{aligned}
$$

Applications - Center of Mass

A wire of mass m and density $\rho(x, y)$ along a curve C has center of mass

$$
\begin{aligned}
& \bar{x}=\frac{1}{m} \int_{C} x \rho(x, y) d s \\
& \bar{y}=\frac{1}{m} \int_{C} y \rho(x, y) d s
\end{aligned}
$$

A thin wire has the shape of the first quadrant part of a circle with center at the origin and radius a. If the density of the wire is

$$
\rho(x, y)=k x y
$$

find the mass and center of mass of the wire.

Line Integrals in Space

If C is a space curve $(x(t), y(t), z(t))$ where $a \leq t \leq b$, then

$$
\begin{aligned}
& \int_{C} f(x, y, z) d s= \\
& \qquad \int_{a}^{b} f(x(t), y(t), z(t)) \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}+\left(z^{\prime}(t)\right)^{2}} d t
\end{aligned}
$$

1. Find $\int_{C}\left(x^{2}+y^{2}+z^{2}\right) d s$ if C is the space curve $(x(t), y(t), z(t))=(t, \cos 2 t, \sin 2 t)$ for $0 \leq t \leq 2 \pi$

More Line Integrals in Space

Can you guess how to define $\int_{C} f(x, y, z) d x, \int_{C} f(x, y, z) d y$, and $\int_{C} f(x, y, z) d z$?

1. Find $\int_{C}(x+z) d x+\int_{C}(x+z) d y+\int_{C}(x+y) d z$ if C consists of the line segments from $(0,0,0)$ to $(1,0,1)$ and from $(1,0,1)$ to $(0,1,2)$

