Math 213 - Line Integrals II

Peter A. Perry

University of Kentucky

November 19, 2018

Homework

- Read Section 16.3 for Monday after Thanksgiving
- Work on Stewart problems for 16.2: 1-21 (odd), 33-41 (odd), 49, 50
- Work on Webwork D1

Unit IV: Vector Calculus

Lecture 35 Vector Fields
Lecture 36 Line Integrals I
Lecture 37 Line Integrals II
Lecture 38 Fundamental Theorem
Lecture 39 Green's Theorem
Lecture 40 Curl and Divergence

Goals of the Day

- Know how to compute line integrals of a vector function in the plane and in space

Remember Space Curves?

A space curve is given by

$$
\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}
$$

The tangent vector to a space curve is

$$
\mathbf{r}^{\prime}(t)=x^{\prime}(t) \mathbf{i}+y^{\prime}(t) \mathbf{j}+z^{\prime}(t) \mathbf{k}
$$

Recall that $\mathbf{r}^{\prime}(t)$ is the velocity, and $\left|\mathbf{r}^{\prime}(t)\right|$ is the speed.
The unit tangent vector is

$$
\mathbf{T}(t)=\frac{\mathbf{r}^{\prime}(t)}{\mathbf{r}(t)}
$$

Find the tangent vector and unit tangent vector to the curve

$$
\mathbf{r}(t)=\cos (t) \mathbf{i}+\sin (t) \mathbf{j}+t \mathbf{k}
$$

for $t=0, t=\pi / 2$, and $t=\pi$.

Recall that the work done by a constant force \mathbf{F} moving an object through a displacement \mathbf{D} is

$$
W=\mathbf{F} \cdot \mathbf{D}
$$

What if \mathbf{F} and the displacement \mathbf{D} vary as the force acts through a curve C ?

Write $\mathbf{D}=\mathbf{T} \Delta s$ where \mathbf{T} is the tangent vector and Δs is arc length.

Then

$$
\begin{aligned}
W & \simeq \sum_{i=1}^{n} \mathbf{F}\left(x_{i}^{*}, y_{i}^{*}, z_{i}^{*}\right) \cdot \mathbf{T}_{i} \Delta s \\
& \rightarrow \int_{C} \mathbf{F} \cdot \mathbf{T} d s
\end{aligned}
$$

How Do You Compute It?

The work done by a variable force \mathbf{F} moving a particle along a curve C is

$$
W=\int_{C} \mathbf{F} \cdot \mathbf{T} d s
$$

If C is parameterized by $\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}$ for $a \leq t \leq b$:

$$
\mathbf{T}=\frac{\mathbf{r}^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|}
$$

and

$$
d s=\left|\mathbf{r}^{\prime}(t)\right| d t
$$

So

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot \mathbf{T} d s & =\int_{a}^{b} \mathbf{F}(x(t), y(t), z(t)) \cdot \frac{\mathbf{r}^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|}\left|\mathbf{r}^{\prime}(t)\right| d t \\
& =\int_{C} \mathbf{F}(x(t), y(t), z(t)) \cdot \mathbf{r}^{\prime}(t) d t
\end{aligned}
$$

This line integral is sometimes written

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}
$$

for short

Now You Try It

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t
$$

Find $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ if:

1. $\mathbf{F}(x, y)=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ and $\mathbf{r}(t)=t^{2} \mathbf{i}+t^{3} \mathbf{j}-2 t \mathbf{k}, 0 \leq t \leq 2$
2. $\mathbf{F}(x, y, z)=y z e^{x} \mathbf{i}+z x e^{y} \mathbf{j}+x y e^{z} \mathbf{k}$ and $\mathbf{r}(t)=\sin t \mathbf{i}+\cos t \mathbf{j}+\tan t \mathbf{k}$, $0 \leq t \leq \pi / 4$

Now You Try It

Find the work done by the force field

$$
\mathbf{F}(x, y)=x^{2} \mathbf{i}+x y \mathbf{j}
$$

on a particle that moves around the circle

$$
x^{2}+y^{2}=4
$$

oriented in the counterclockwise direction

Real Science

Steady current in a wire generates a magnetic field \mathbf{B} tangent to any circle that lies in the plane perpendicular to the wire centered on the wire. According to Ampere's law,

$$
\int_{C} \mathbf{B} \cdot d \mathbf{r}=\mu_{0} l
$$

where

- I is the net current flowing through the wire
- μ_{0} is a physical constant

What is the magnitude of the magnetic field at a distance r from the wire?

Summary

Arc length differential

$$
d s=\sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}+z^{\prime}(t)^{2}} d t
$$

Line integral with respect to arc length

$$
\int_{C} f(x, y, z) d s=\int_{a}^{b} f(x(t), y(t), z(t)) d s
$$

Line integral with respect to x, y, z

$$
\begin{aligned}
\int_{C} f(x, y, z) d x & =\int_{a}^{b} f(x(t), y(t), z(t)) x^{\prime}(t) d t \\
\int_{C} f(x, y, z) d y & =\int_{a}^{b} f(x(t), y(t), z(t)) y^{\prime}(t) d t \\
\int_{C} f(x, y, z) d y & =\int_{a}^{b} f(x(t), y(t), z(t)) z^{\prime}(t) d t
\end{aligned}
$$

Line integral of a vector field

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{a}^{b} \mathbf{F}(x(t), y(t), z(t)) \cdot \mathbf{r}^{\prime}(t) d t
$$

Chain Rule Puzzler

If $\mathbf{F}(x, y, z)$ is a vector field and $\mathbf{r}(t)=x(t), y(t), z(t))$ is a parameterized curve, what is

$$
\frac{d}{d t}[F(x(t), y(z), z(t))]
$$

in terms of ∇F and $\mathbf{r}^{\prime}(t)$?

Remember the Fundamental Theorem of Calculus?

What is

$$
\int_{a}^{b} \frac{d}{d t} F(t) d t ?
$$

Line Integral of a Gradient Vector Field

Suppose $\mathbf{F}=\nabla \phi$ for a potential function $\phi(x, y, z)$
Suppose $\mathbf{r}(t), a \leq t \leq b$ is a parameterized path C.
Is there a simple way to compute

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r} ?
$$

