Math 213 - Conservative Vector Fields

Peter A. Perry

University of Kentucky

November 26, 2018

Vocabulary

Fundamental Theorem

Path Independence

Conservative Fields

Homework

Path Independence

Conservative Fields

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Unit IV: Vector Calculus

Lecture 35Vector FieldsLecture 36Line Integrals ILecture 37Line Integrals IILecture 38Fundamental TheoremLecture 39Green's TheoremLecture 40Curl and Divergence

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Goals of the Day

- Learn the Vocabulary for Section 16.3
- Learn the Fundamental Theorem for Line Integrals
- Learn what it means for a line integral to be *independent of path*
- Learn how to tell when a vector field F is *conservative* and how to find the function f with ∇f = F

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Vocabulary - Open Regions

open region A region D of \mathbb{R}^2 or \mathbb{R}^3 where for every point P in the region, there is a disc or sphere centered at P contained in D

Which of the following regions is open?

Path Independence

Conservative Fields

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Chain Rule Puzzler

If f(x, y, z) is a function and $\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle$ is a parameterized curve, what is

$$\frac{d}{dt}\left[f(x(t),y(z),z(t))\right]$$

in terms of ∇f and $\mathbf{r}'(t)$?

Answer: $\nabla f(\mathbf{r}(t)) \cdot \mathbf{r}'(t)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Remember the Fundamental Theorem of Calculus?

What is

$$\int_{a}^{b} \frac{d}{dt} F(t) \, dt ?$$

(Remember the Net Change Theorem?)

Answer: F(b) - F(a)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Line Integral of a Gradient Vector Field

Suppose $\mathbf{F} = \nabla f$ for a potential function f(x, y, z)

Suppose $\mathbf{r}(t)$, $a \leq t \leq b$ is a parameterized path C.

Is there a simple way to compute

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{a}^{b} \nabla f(\mathbf{r}(t)) \cdot \mathbf{r}'(t) \, dt = \int_{a}^{b} \frac{d}{dt} \left(f(\mathbf{r}(t)) \right) \, dt$$

like the one-variable "net change theorem"?

Answer: You bet!

Line Integral of a Gradient Vector Field

Theorem Suppose that $\mathbf{F}(\mathbf{r}) = \nabla f(\mathbf{r})$ is a gradient vector field, and C is a path parameterized by $\mathbf{r}(t)$, $a \le t \le b$. Then

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = f(\mathbf{r}(b)) - f(\mathbf{r}(a))$$

How to think about the Fundamental Theorem for Line Integrals

The figure at the left shows a curve *C* and a contour map of a function *f* whose gradient is continuous. Find $\int_C \nabla f \cdot d\mathbf{r}$.

Hint: Think of f as a height function, and the contour plot as a contour map. The gradient gives the magnitude and direction of the greatest change in height at any given point.

(日)、

э

Vocabulary - Paths and Vector Fields

path A piecewise smooth curve

closed path A curve whose initial and terminal points are the same

conservative A vector field **F** which is the gradient of a scalar function *f*, **vector field** called the *potential*, so that $\mathbf{F} = \nabla f$

Which of the following is not a closed path?

Vocabulary

Fundamental Theorem

Path Independence

Conservative Fields

At left is the contour plot for a function f whose gradient is continuous.

・ロト ・ 一 ト ・ モト ・ モト

æ

Compute the following:

Vocabulary

Fundamental Theorem

Path Independence

Conservative Fields

At left is the contour plot for a function f whose gradient is continuous.

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

æ

Compute the following:

•
$$\int_{C_1} \nabla f \cdot d\mathbf{r}$$

Path Independence

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

At left is the contour plot for a function f whose gradient is continuous.

Compute the following:

- $\int_{C_1} \nabla f \cdot d\mathbf{r}$ $\int_{C_2} \nabla f \cdot d\mathbf{r}$

Vocabulary

Fundamental Theorem

Path Independence

Conservative Fields

At left is the contour plot for a function f whose gradient is continuous.

Compute the following:

- $\int_{C_1} \nabla f \cdot d\mathbf{r}$
- $\int_{C_2} \nabla f \cdot d\mathbf{r}$
- Does it matter what path connects the endpoints?

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Vocabulary

Fundamental Theorem

Path Independence

Conservative Fields

At left is the contour plot for a function f whose gradient is continuous.

Compute the following:

- $\int_{C_1} \nabla f \cdot d\mathbf{r}$
- $\int_{C_2} \nabla f \cdot d\mathbf{r}$
- Does it matter what path connects the endpoints?

Definition A line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ is *independent of path* in a domain *D* f

$$\int_{C_1} \mathbf{F} \cdot d\mathbf{r} = \int_{C_2} \mathbf{F} \cdot d\mathbf{r}$$

for any two paths C_1 and C_2 that have the same initial and terminal points.

lf

(日)、(四)、(E)、(E)、(E)

Conservative Fields

Path Independence and Closed Paths

 $\int_{C_1} \mathbf{F} \cdot d\mathbf{r} = \int_{C_2} \mathbf{F} \cdot d\mathbf{r}$

and we reverse the direction of $C_2 \ldots$

Path Independence and Closed Paths

$$\int_{C_1} \mathbf{F} \cdot d\mathbf{r} = \int_{C_2} \mathbf{F} \cdot d\mathbf{r}$$

and we reverse the direction of $C_2 \ldots$

Then

lf

$$\int_C \mathbf{F} \cdot d\mathbf{r} = 0$$

where *C* is the closed loop path that starts with C_1 and ends with $-C_2$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Path Independence and Closed Paths

$$\int_{C_1} \mathbf{F} \cdot d\mathbf{r} = \int_{C_2} \mathbf{F} \cdot d\mathbf{r}$$

and we reverse the direction of $C_2 \ldots$

Then

lf

$$\int_C \mathbf{F} \cdot d\mathbf{r} = 0$$

where *C* is the closed loop path that starts with C_1 and ends with $-C_2$.

Theorem The integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ is independent of path for all paths in a domain D if and only if $\int_C \mathbf{F} \cdot d\mathbf{r} = 0$ for every closed path in D.

- ▲ ロ ▶ → 個 ▶ → 目 ▶ → 目 → のへの

・ロト ・四ト ・ヨト ・ヨト

æ

Vocabulary - Connected Regions

connected region	A region D of \mathbb{R}^2 or \mathbb{R}^3 where any points P and Q can be connected by a path contained in D
domain	An open, connected region of \mathbb{R}^2 or \mathbb{R}^3

Which of these regions is not connected?

・ロト ・四ト ・ヨト ・ヨト

æ

Vocabulary - Connected Regions

connected region	A region D of \mathbb{R}^2 or \mathbb{R}^3 where any points P and Q can be connected by a path contained in D
domain	An open, connected region of \mathbb{R}^2 or \mathbb{R}^3

Which of these regions is not connected?

Vocabulary - Simply Connected Regions

simple curveA curve that doesn't intersect itselfsimply connectedA connected region so that every simple closed curve in D
surrounds only points of D

Which of these regions is not simply connected?

Conservative Fields

First Theorem of the Day

Theorem Suppose **F** is a vector field that is continuous on an open, connected region *D*. If $\int_C \mathbf{F} \cdot d\mathbf{r}$ is independent of path in *D*, then **F** is a conservative vector field on *D*; that is, there is a function *f* so that $\nabla f = \mathbf{F}$

How do you find the function f (two dimensions)?

- Pick a point (a, b) in the domain D
- Compute

$$f(x,y) = \int_{(a,b)}^{(x,y)} \mathbf{F} \cdot d\mathbf{r}$$

• In fact, you can show that this function f satisfies

$$\mathbf{F}(x,y) = \frac{\partial f}{\partial x}(x,y)\mathbf{i} + \frac{\partial f}{\partial y}(x,y)\mathbf{j}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

How You (Almost) Tell when F is Conservative

Key Observation If $F = \nabla f$ then

$$\mathbf{F}(x,y) = P(x,y)\mathbf{i} + Q(x,y)\mathbf{j} = \frac{\partial f}{\partial x}(x,y)\mathbf{i} + \frac{\partial f}{\partial y}\mathbf{j}$$

Compute $\partial P/\partial y$ and $\partial Q/\partial x$ as a second derivative of f:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

How You (Almost) Tell when F is Conservative

Key Observation If $F = \nabla f$ then

$$\mathbf{F}(x,y) = P(x,y)\mathbf{i} + Q(x,y)\mathbf{j} = \frac{\partial f}{\partial x}(x,y)\mathbf{i} + \frac{\partial f}{\partial y}\mathbf{j}$$

Compute $\partial P/\partial y$ and $\partial Q/\partial x$ as a second derivative of f:

$$\frac{\partial P}{\partial y} = \frac{\partial}{\partial y}\frac{\partial f}{\partial x} = \frac{\partial^2 f}{\partial y \partial x}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

How You (Almost) Tell when F is Conservative

Key Observation If $F = \nabla f$ then

$$\mathbf{F}(x,y) = P(x,y)\mathbf{i} + Q(x,y)\mathbf{j} = \frac{\partial f}{\partial x}(x,y)\mathbf{i} + \frac{\partial f}{\partial y}\mathbf{j}$$

Compute $\partial P/\partial y$ and $\partial Q/\partial x$ as a second derivative of f:

$$\frac{\partial P}{\partial y} = \frac{\partial}{\partial y}\frac{\partial f}{\partial x} = \frac{\partial^2 f}{\partial y \partial x} \qquad \qquad \frac{\partial Q}{\partial x} = \frac{\partial}{\partial x}\frac{\partial f}{\partial y} = \frac{\partial^2 f}{\partial x \partial y}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

How You (Almost) Tell when F is Conservative

Key Observation If $F = \nabla f$ then

$$\mathbf{F}(x,y) = P(x,y)\mathbf{i} + Q(x,y)\mathbf{j} = \frac{\partial f}{\partial x}(x,y)\mathbf{i} + \frac{\partial f}{\partial y}\mathbf{j}$$

Compute $\partial P/\partial y$ and $\partial Q/\partial x$ as a second derivative of f:

$$\frac{\partial P}{\partial y} = \frac{\partial}{\partial y}\frac{\partial f}{\partial x} = \frac{\partial^2 f}{\partial y \partial x} \qquad \qquad \frac{\partial Q}{\partial x} = \frac{\partial}{\partial x}\frac{\partial f}{\partial y} = \frac{\partial^2 f}{\partial x \partial y}$$

So, by Clairaut's Theorem, for a conservative vector field:

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Find the Conservative Vector Field

Theorem If $\mathbf{F}(x, y) = P(x, y)\mathbf{i} + Q(x, y)\mathbf{j}$ is a conservative vector field, and P, Q have continuous first-order partials on a domain D, then throughout D

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

Which of the following vector fields are definitely not conservative?

1.
$$\mathbf{F}(x, y) = -y\mathbf{i} + x\mathbf{j}$$

2. $\mathbf{F}(x, y) = x^{3}\mathbf{i} + y^{2}\mathbf{j}$
3. $\mathbf{F}(x, y) = y\mathbf{e}^{x}\mathbf{i} + (\mathbf{e}^{x} + \mathbf{e}^{y})\mathbf{j}$
4. $\mathbf{F}(x, y) = \frac{-y}{x^{2} + y^{2}}\mathbf{i} + \frac{x}{x^{2} + y^{2}}\mathbf{j}, \quad (x, y) \neq (0, 0)$

There's One in Every Crowd

$$\mathbf{F}(x,y) = \frac{-y}{x^2 + y^2} \mathbf{i} + \frac{x}{x^2 + y^2} \mathbf{j}$$

- 1. Does **F** satisfy the "conservative vector field" condition?
- 2. Suppose *C* is the circle $x^2 + y^2 = 1$. What is $\int_C \mathbf{F} \cdot d\mathbf{r}$ for the vector field shown?
- 3. Is the domain

$$\{(x, y): x^2 + y^2 \neq 0\}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

simply connected?

Second Theorem of the Day

Theorem Let $\mathbf{F} = P\mathbf{i} + Q\mathbf{j}$ be a vector field defined on an open, simply connected region D. Suppose that P and Q have continuous partial derivatives and

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

throughout D. Then **F** is conservative.

Which of the following vector fields are conservative?

1.
$$\mathbf{F}(x, y) = -y\mathbf{i} + x\mathbf{j}$$

2. $\mathbf{F}(x, y) = x^{3}\mathbf{i} + y^{2}\mathbf{j}$
3. $\mathbf{F}(x, y) = y\mathbf{e}^{x}\mathbf{i} + (\mathbf{e}^{x} + \mathbf{e}^{y})\mathbf{j}$
4. $\mathbf{F}(x, y) = \frac{-y}{x^{2} + y^{2}}\mathbf{i} + \frac{x}{x^{2} + y^{2}}\mathbf{j}, \quad (x, y) \neq (0, 0)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

How to Find the Potential f

Recall that if $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} = \nabla f$, then

$$P = \frac{\partial f}{\partial x}, \quad Q = \frac{\partial f}{\partial y}$$

Example Find f if $\mathbf{F}(x, y) = (y^2 - 2x)\mathbf{i} + 2xy\mathbf{j}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

How to Find the Potential f

Recall that if $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} = \nabla f$, then

$$P = \frac{\partial f}{\partial x}, \quad Q = \frac{\partial f}{\partial y}$$

Example Find *f* if $\mathbf{F}(x, y) = (y^2 - 2x)\mathbf{i} + 2xy\mathbf{j}$

1.
$$\frac{\partial f}{\partial x} = y^2 - 2x$$
 so taking antiderivatives in x
 $f(x, y) = y^2 x - x^2 + C(y)$

where C(y) is a constant that may depend on y

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

How to Find the Potential f

Recall that if $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} = \nabla f$, then

$$P = \frac{\partial f}{\partial x}, \quad Q = \frac{\partial f}{\partial y}$$

Example Find *f* if $\mathbf{F}(x, y) = (y^2 - 2x)\mathbf{i} + 2xy\mathbf{j}$

1.
$$\frac{\partial f}{\partial x} = y^2 - 2x$$
 so taking antiderivatives in x
 $f(x, y) = y^2 x - x^2 + C(y)$

where C(y) is a constant that may depend on y

2. From the answer we found in step 1, $\frac{\partial f}{\partial y} = 2xy + C'(y) = 2xy$ so C'(y) = 0

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

How to Find the Potential f

Recall that if $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} = \nabla f$, then

$$P = \frac{\partial f}{\partial x}, \quad Q = \frac{\partial f}{\partial y}$$

Example Find *f* if $\mathbf{F}(x, y) = (y^2 - 2x)\mathbf{i} + 2xy\mathbf{j}$

1.
$$\frac{\partial f}{\partial x} = y^2 - 2x$$
 so taking antiderivatives in x

$$f(x,y) = y^2 x - x^2 + \boldsymbol{C}(y)$$

where C(y) is a constant that may depend on y

2. From the answer we found in step 1, $\frac{\partial f}{\partial y} = 2xy + C'(y) = 2xy$ so C'(y) = 0

3. Finally,
$$f(x, y) = xy^2 - x^2 + C$$

Line Integrals of Conservative Vector Fields

Recall that if $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} = \nabla f$, then

$$P = \frac{\partial f}{\partial x}, \quad Q = \frac{\partial f}{\partial y}$$

Example: Find $\int_C \mathbf{F} \cdot d\mathbf{r}$ by finding f so that $\nabla f = \mathbf{F}$ if:

$$\mathbf{F}(x, y) = (1 + xy)e^{xy}\mathbf{i} + x^2e^{xy}\mathbf{j}$$

$$C: \mathbf{r}(t) = \cos t\mathbf{i} + 2\sin t\mathbf{j}, \quad 0 \le t \le \pi/2$$