Math 213 - Conservative Vector Fields

Peter A. Perry
University of Kentucky

November 26, 2018

Homework

- Read Section 16.4 for Wednesday
- Work on Stewart problems for 16.3: 1, 2, 3-9 (odd), 13-19 (odd), 23, 25, 31-35
- Finish Homework D1 due Wednesday November 28

Unit IV: Vector Calculus

Lecture 35 Vector Fields
Lecture 36 Line Integrals I
Lecture 37 Line Integrals II
Lecture 38 Fundamental Theorem
Lecture 39 Green's Theorem
Lecture 40 Curl and Divergence

Goals of the Day

- Learn the Vocabulary for Section 16.3
- Learn the Fundamental Theorem for Line Integrals
- Learn what it means for a line integral to be independent of path
- Learn how to tell when a vector field \mathbf{F} is conservative and how to find the function f with $\nabla f=\mathbf{F}$

Vocabulary - Open Regions

open region \quad A region D of \mathbb{R}^{2} or \mathbb{R}^{3} where for every point P in the region, there is a disc or sphere centered at P contained in D

Which of the following regions is open?

$\{(x, y): x>1\}$

$\left\{(x, y): x^{2}+y^{2} \leq 4\right\}$

Chain Rule Puzzler

If $f(x, y, z)$ is a function and $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle$ is a parameterized curve, what is

$$
\frac{d}{d t}[f(x(t), y(z), z(t))]
$$

in terms of ∇f and $\mathbf{r}^{\prime}(t)$?
Answer: $\nabla f(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t)$

Remember the Fundamental Theorem of Calculus?

What is

$$
\int_{a}^{b} \frac{d}{d t} F(t) d t ?
$$

(Remember the Net Change Theorem?)
Answer: $F(b)-F(a)$

Line Integral of a Gradient Vector Field

Suppose $\mathbf{F}=\nabla f$ for a potential function $f(x, y, z)$
Suppose $\mathbf{r}(t), a \leq t \leq b$ is a parameterized path C.

Is there a simple way to compute

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{a}^{b} \nabla f(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t=\int_{a}^{b} \frac{d}{d t}(f(\mathbf{r}(t))) d t
$$

like the one-variable "net change theorem"?

Answer: You bet!

Line Integral of a Gradient Vector Field

Theorem Suppose that $\mathbf{F}(\mathbf{r})=\nabla f(\mathbf{r})$ is a gradient vector field, and C is a path parameterized by $\mathbf{r}(t), a \leq t \leq b$. Then

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=f(\mathbf{r}(b))-f(\mathbf{r}(a))
$$

How to think about the Fundamental Theorem for Line Integrals

The figure at the left shows a curve C and a contour map of a function f whose gradient is continuous. Find $\int_{C} \nabla f \cdot d \mathbf{r}$.

Hint: Think of f as a height function, and the contour plot as a contour map. The gradient gives the magnitude and direction of the greatest change in height at any given point.

Vocabulary - Paths and Vector Fields

path
closed path conservative vector field

A piecewise smooth curve
A curve whose initial and terminal points are the same
A vector field \mathbf{F} which is the gradient of a scalar function f, called the potential, so that $\mathbf{F}=\nabla f$

Which of the following is not a closed path?

A

B

C

At left is the contour plot for a function f whose gradient is continuous.

Compute the following:

At left is the contour plot for a function f whose gradient is continuous.

Compute the following:

- $\int_{C_{1}} \nabla f \cdot d \mathbf{r}$

At left is the contour plot for a function f whose gradient is continuous.

Compute the following:

- $\int_{C_{1}} \nabla f \cdot d \mathbf{r}$
- $\int_{C_{2}} \nabla f \cdot d \mathbf{r}$

At left is the contour plot for a function f whose gradient is continuous.

Compute the following:

- $\int_{C_{1}} \nabla f \cdot d \mathbf{r}$
- $\int_{C_{2}} \nabla f \cdot d \mathbf{r}$
- Does it matter what path connects the endpoints?

At left is the contour plot for a function f whose gradient is continuous.

Compute the following:

- $\int_{C_{1}} \nabla f \cdot d \mathbf{r}$
- $\int_{C_{2}} \nabla f \cdot d \mathbf{r}$
- Does it matter what path connects the endpoints?

Definition A line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ is independent of path in a domain $D \mathrm{f}$

$$
\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r}=\int_{C_{2}} \mathbf{F} \cdot d \mathbf{r}
$$

for any two paths C_{1} and C_{2} that have the same initial and terminal points.

Path Independence and Closed Paths

If

$$
\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r}=\int_{C_{2}} \mathbf{F} \cdot d \mathbf{r}
$$

and we reverse the direction of $C_{2} \ldots$

Path Independence and Closed Paths

If

$$
\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r}=\int_{C_{2}} \mathbf{F} \cdot d \mathbf{r}
$$

and we reverse the direction of $C_{2} \ldots$
Then

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=0
$$

where C is the closed loop path that starts with C_{1} and ends with $-C_{2}$.

Path Independence and Closed Paths

If

$$
\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r}=\int_{C_{2}} \mathbf{F} \cdot d \mathbf{r}
$$

and we reverse the direction of $C_{2} \ldots$
Then

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=0
$$

where C is the closed loop path that starts with C_{1} and ends with $-C_{2}$.

Theorem The integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ is independent of path for all paths in a domain D if and only if $\int_{C} \mathbf{F} \cdot d \mathbf{r}=0$ for every closed path in D.

Vocabulary - Connected Regions

connected region A region D of \mathbb{R}^{2} or \mathbb{R}^{3} where any points P and Q can be connected by a path contained in D An open, connected region of \mathbb{R}^{2} or \mathbb{R}^{3}

Which of these regions is not connected?

Vocabulary - Connected Regions

Which of these regions is not connected?

Vocabulary - Simply Connected Regions

simple curve simply connected

A curve that doesn't intersect itself
A connected region so that every simple closed curve in D surrounds only points of D

Which of these regions is not simply connected?

$\left\{(x, y): 1 \leq x^{2}+y^{2} \leq 2\right\}$

$\{(x, y):(x, y) \neq(0,0)\}$

First Theorem of the Day

Theorem Suppose \mathbf{F} is a vector field that is continuous on an open, connected region D. If $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ is independent of path in D, then \mathbf{F} is a conservative vector field on D; that is, there is a function f so that $\nabla f=\mathbf{F}$

How do you find the function f (two dimensions)?

- Pick a point (a, b) in the domain D
- Compute

$$
f(x, y)=\int_{(a, b)}^{(x, y)} \mathbf{F} \cdot d \mathbf{r}
$$

- In fact, you can show that this function f satisfies

$$
\mathbf{F}(x, y)=\frac{\partial f}{\partial x}(x, y) \mathbf{i}+\frac{\partial f}{\partial y}(x, y) \mathbf{j}
$$

How You (Almost) Tell when F is Conservative

Key Observation If $F=\nabla f$ then

$$
\mathbf{F}(x, y)=P(x, y) \mathbf{i}+Q(x, y) \mathbf{j}=\frac{\partial f}{\partial x}(x, y) \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}
$$

Compute $\partial P / \partial y$ and $\partial Q / \partial x$ as a second derivative of f :

How You (Almost) Tell when \mathbf{F} is Conservative

Key Observation If $F=\nabla f$ then

$$
\mathbf{F}(x, y)=P(x, y) \mathbf{i}+Q(x, y) \mathbf{j}=\frac{\partial f}{\partial x}(x, y) \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}
$$

Compute $\partial P / \partial y$ and $\partial Q / \partial x$ as a second derivative of f :

$$
\frac{\partial P}{\partial y}=\frac{\partial}{\partial y} \frac{\partial f}{\partial x}=\frac{\partial^{2} f}{\partial y \partial x}
$$

How You (Almost) Tell when \mathbf{F} is Conservative

Key Observation If $F=\nabla f$ then

$$
\mathbf{F}(x, y)=P(x, y) \mathbf{i}+Q(x, y) \mathbf{j}=\frac{\partial f}{\partial x}(x, y) \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}
$$

Compute $\partial P / \partial y$ and $\partial Q / \partial x$ as a second derivative of f :

$$
\frac{\partial P}{\partial y}=\frac{\partial}{\partial y} \frac{\partial f}{\partial x}=\frac{\partial^{2} f}{\partial y \partial x} \quad \frac{\partial Q}{\partial x}=\frac{\partial}{\partial x} \frac{\partial f}{\partial y}=\frac{\partial^{2} f}{\partial x \partial y}
$$

How You (Almost) Tell when \mathbf{F} is Conservative

Key Observation If $F=\nabla f$ then

$$
\mathbf{F}(x, y)=P(x, y) \mathbf{i}+Q(x, y) \mathbf{j}=\frac{\partial f}{\partial x}(x, y) \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}
$$

Compute $\partial P / \partial y$ and $\partial Q / \partial x$ as a second derivative of f :

$$
\frac{\partial P}{\partial y}=\frac{\partial}{\partial y} \frac{\partial f}{\partial x}=\frac{\partial^{2} f}{\partial y \partial x} \quad \frac{\partial Q}{\partial x}=\frac{\partial}{\partial x} \frac{\partial f}{\partial y}=\frac{\partial^{2} f}{\partial x \partial y}
$$

So, by Clairaut's Theorem, for a conservative vector field:

$$
\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}
$$

Find the Conservative Vector Field

Theorem If $\mathbf{F}(x, y)=P(x, y) \mathbf{i}+Q(x, y) \mathbf{j}$ is a conservative vector field, and P, Q have continuous first-order partials on a domain D, then throughout D

$$
\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}
$$

Which of the following vector fields are definitely not conservative?

1. $\mathbf{F}(x, y)=-y \mathbf{i}+x \mathbf{j}$
2. $\mathbf{F}(x, y)=x^{3} \mathbf{i}+y^{2} \mathbf{j}$
3. $\mathbf{F}(x, y)=y e^{x} \mathbf{i}+\left(e^{x}+e^{y}\right) \mathbf{j}$
4. $\mathbf{F}(x, y)=\frac{-y}{x^{2}+y^{2}} \mathbf{i}+\frac{x}{x^{2}+y^{2}} \mathbf{j}, \quad(x, y) \neq(0,0)$

There's One in Every Crowd

1. Does F satisfy the "conservative vector field" condition?
2. Suppose C is the circle $x^{2}+y^{2}=1$. What is $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ for the vector field shown?
3. Is the domain

$$
\left\{(x, y): x^{2}+y^{2} \neq 0\right\}
$$

simply connected?

Second Theorem of the Day

Theorem Let $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}$ be a vector field defined on an open, simply connected region D. Suppose that P and Q have continuous partial derivatives and

$$
\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}
$$

throughout D. Then \mathbf{F} is conservative.

Which of the following vector fields are conservative?

1. $\mathbf{F}(x, y)=-y \mathbf{i}+x \mathbf{j}$
2. $\mathbf{F}(x, y)=x^{3} \mathbf{i}+y^{2} \mathbf{j}$
3. $\mathbf{F}(x, y)=y e^{x} \mathbf{i}+\left(e^{x}+e^{y}\right) \mathbf{j}$
4. $\mathbf{F}(x, y)=\frac{-y}{x^{2}+y^{2}} \mathbf{i}+\frac{x}{x^{2}+y^{2}} \mathbf{j}, \quad(x, y) \neq(0,0)$

How to Find the Potential f

Recall that if $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}=\nabla f$, then

$$
P=\frac{\partial f}{\partial x}, \quad Q=\frac{\partial f}{\partial y}
$$

Example Find f if $\mathbf{F}(x, y)=\left(y^{2}-2 x\right) \mathbf{i}+2 x y \mathbf{j}$

How to Find the Potential f

Recall that if $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}=\nabla f$, then

$$
P=\frac{\partial f}{\partial x}, \quad Q=\frac{\partial f}{\partial y}
$$

Example Find f if $\mathbf{F}(x, y)=\left(y^{2}-2 x\right) \mathbf{i}+2 x y \mathbf{j}$

1. $\frac{\partial f}{\partial x}=y^{2}-2 x$ so taking antiderivatives in x

$$
f(x, y)=y^{2} x-x^{2}+C(y)
$$

where $C(y)$ is a constant that may depend on y

How to Find the Potential f

Recall that if $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}=\nabla f$, then

$$
P=\frac{\partial f}{\partial x}, \quad Q=\frac{\partial f}{\partial y}
$$

Example Find f if $\mathbf{F}(x, y)=\left(y^{2}-2 x\right) \mathbf{i}+2 x y \mathbf{j}$

1. $\frac{\partial f}{\partial x}=y^{2}-2 x$ so taking antiderivatives in x

$$
f(x, y)=y^{2} x-x^{2}+C(y)
$$

where $C(y)$ is a constant that may depend on y
2. From the answer we found in step $1, \frac{\partial f}{\partial y}=2 x y+C^{\prime}(y)=2 x y$ so $C^{\prime}(y)=0$

How to Find the Potential f

Recall that if $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}=\nabla f$, then

$$
P=\frac{\partial f}{\partial x}, \quad Q=\frac{\partial f}{\partial y}
$$

Example Find f if $\mathbf{F}(x, y)=\left(y^{2}-2 x\right) \mathbf{i}+2 x y \mathbf{j}$

1. $\frac{\partial f}{\partial x}=y^{2}-2 x$ so taking antiderivatives in x

$$
f(x, y)=y^{2} x-x^{2}+C(y)
$$

where $C(y)$ is a constant that may depend on y
2. From the answer we found in step $1, \frac{\partial f}{\partial y}=2 x y+C^{\prime}(y)=2 x y$ so $C^{\prime}(y)=0$
3. Finally, $f(x, y)=x y^{2}-x^{2}+C$

Line Integrals of Conservative Vector Fields

Recall that if $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}=\nabla f$, then

$$
P=\frac{\partial f}{\partial x}, \quad Q=\frac{\partial f}{\partial y}
$$

Example: Find $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ by finding f so that $\nabla f=\mathbf{F}$ if:

$$
\begin{aligned}
\mathbf{F}(x, y) & =(1+x y) e^{x y} \mathbf{i}+x^{2} e^{x y} \mathbf{j} \\
C: \mathbf{r}(t) & =\cos t \mathbf{i}+2 \sin t \mathbf{j}, \quad 0 \leq t \leq \pi / 2
\end{aligned}
$$

