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Homework

• Read Section 16.4 for Wednesday

• Work on Stewart problems for 16.3: 1, 2, 3-9
(odd), 13-19 (odd), 23, 25, 31-35

• Finish Homework D1 due Wednesday November
28
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Unit IV: Vector Calculus

Lecture 35 Vector Fields
Lecture 36 Line Integrals I
Lecture 37 Line Integrals II
Lecture 38 Fundamental Theorem
Lecture 39 Green’s Theorem
Lecture 40 Curl and Divergence
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Goals of the Day

• Learn the Vocabulary for Section 16.3

• Learn the Fundamental Theorem for Line Integrals

• Learn what it means for a line integral to be independent of
path

• Learn how to tell when a vector field F is conservative and
how to find the function f with ∇f = F
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Vocabulary - Open Regions

open region A region D of R2 or R3 where for every point P
in the region, there is a disc or sphere centered at P
contained in D

Which of the following regions is open?

{(x , y ) : x > 1} {(x , y ) : x2 + y2 ≤ 4} {(x , y ) : x2 + y2 > 4}



Learning Goals Vocabulary Fundamental Theorem Path Independence Conservative Fields

Chain Rule Puzzler

If f (x , y , z) is a function and r(t) = 〈x(t), y(t), z(t)〉 is a parameterized curve,
what is

d

dt
[f (x(t), y(z), z(t))]

in terms of ∇f and r′(t)?

Answer: ∇f (r(t)) · r′(t)
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Remember the Fundamental Theorem of Calculus?

What is ∫ b

a

d

dt
F (t) dt ?

(Remember the Net Change Theorem?)

Answer: F (b)− F (a)
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Line Integral of a Gradient Vector Field

Suppose F = ∇f for a potential function f (x , y , z)

Suppose r(t), a ≤ t ≤ b is a parameterized path C .

Is there a simple way to compute∫
C

F · dr =
∫ b

a
∇f (r(t)) · r′(t) dt =

∫ b

a

d

dt
(f (r(t))) dt

like the one-variable “net change theorem”?

Answer: You bet!
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Line Integral of a Gradient Vector Field

Theorem Suppose that F(r) = ∇f (r) is a gradient vector field,
and C is a path parameterized by r(t), a ≤ t ≤ b. Then∫

C
F · dr = f (r(b))− f (r(a))
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How to think about the Fundamental Theorem for Line
Integrals

y

x
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40

500

60
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80
90

The figure at the left shows a curve C and a
contour map of a function f whose gradient
is continuous. Find

∫
C ∇f · dr.

Hint: Think of f as a height function, and
the contour plot as a contour map. The
gradient gives the magnitude and direction
of the greatest change in height at any given
point.
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Vocabulary - Paths and Vector Fields

path A piecewise smooth curve

closed path A curve whose initial and terminal points are the same

conservative A vector field F which is the gradient of a scalar function f ,
vector field called the potential, so that F = ∇f

Which of the following is not a closed path?

y

x

A

y

x

B

y

x

C
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C1

C2

At left is the contour plot for a func-
tion f whose gradient is continuous.

Compute the following:

•
∫
C1
∇f · dr

•
∫
C2
∇f · dr

• Does it matter what path
connects the endpoints?

Definition A line integral
∫
C F · dr is independent of path in a

domain D f ∫
C1

F · dr =
∫
C2

F · dr

for any two paths C1 and C2 that have the same initial and terminal
points.
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Path Independence and Closed Paths

y

x

C1

C2

−C2

If ∫
C1

F · dr =
∫
C2

F · dr

and we reverse the direction of C2 . . .

Then ∫
C

F · dr = 0

where C is the closed loop path that starts
with C1 and ends with −C2.

Theorem The integral
∫
C F · dr is independent of path for all paths

in a domain D if and only if
∫
C F · dr = 0 for every closed path in

D.



Learning Goals Vocabulary Fundamental Theorem Path Independence Conservative Fields

Path Independence and Closed Paths
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Vocabulary - Connected Regions

connected region A region D of R2 or R3 where any points P and Q
can be connected by a path contained in D

domain An open, connected region of R2 or R3

Which of these regions is not connected?

P Q
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Vocabulary - Simply Connected Regions

simple curve A curve that doesn’t intersect itself

simply connected A connected region so that every simple closed curve in D
surrounds only points of D

Which of these regions is not simply connected?

{(x , y ) : 1 ≤ x2 + y2 ≤ 2} {(x , y ) : (x , y ) 6= (0, 0)}
{(x , y ) : x2 + y2 ≤ 4}
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First Theorem of the Day

Theorem Suppose F is a vector field that is continuous on an
open, connected region D. If

∫
C F · dr is independent of path in D,

then F is a conservative vector field on D; that is, there is a function
f so that ∇f = F

How do you find the function f (two dimensions)?

• Pick a point (a, b) in the domain D

• Compute

f (x , y) =
∫ (x ,y )

(a,b)
F · dr

• In fact, you can show that this function f satisfies

F(x , y) =
∂f

∂x
(x , y)i +

∂f

∂y
(x , y)j
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How You (Almost) Tell when F is Conservative

Key Observation If F = ∇f then

F(x , y) = P(x , y)i +Q(x , y)j =
∂f

∂x
(x , y)i +

∂f

∂y
j

Compute ∂P/∂y and ∂Q/∂x as a second derivative of f :

∂P

∂y
=

∂

∂y

∂f

∂x
=

∂2f

∂y∂x

∂Q

∂x
=

∂

∂x

∂f

∂y
=

∂2f

∂x∂y

So, by Clairaut’s Theorem, for a conservative vector field:

∂P

∂y
=

∂Q

∂x
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Find the Conservative Vector Field

Theorem If F(x , y) = P(x , y)i+Q(x , y)j is a conservative vector
field, and P,Q have continuous first-order partials on a domain D,
then throughout D

∂P

∂y
=

∂Q

∂x

Which of the following vector fields are definitely not conservative?

1. F(x , y) = −y i + x j

2. F(x , y) = x3i + y2j

3. F(x , y) = yex i + (ex + ey )j

4. F(x , y) =
−y

x2 + y2
i +

x

x2 + y2
j, (x , y) 6= (0, 0)
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There’s One in Every Crowd

−2 −1 0 1 2
−2

−1

0

1

2

F(x , y) =
−y

x2 + y2
i +

x

x2 + y2
j

1. Does F satisfy the “conservative
vector field” condition?

2. Suppose C is the circle x2 + y2 = 1.
What is

∫
C F · dr for the vector field

shown?

3. Is the domain

{(x , y) : x2 + y2 6= 0}

simply connected?
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Second Theorem of the Day

Theorem Let F = P i+Qj be a vector field defined on an open,
simply connected region D. Suppose that P and Q have continuous
partial derivatives and

∂P

∂y
=

∂Q

∂x

throughout D. Then F is conservative.

Which of the following vector fields are conservative?

1. F(x , y) = −y i + x j

2. F(x , y) = x3i + y2j

3. F(x , y) = yex i + (ex + ey )j

4. F(x , y) =
−y

x2 + y2
i +

x

x2 + y2
j, (x , y) 6= (0, 0)
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How to Find the Potential f

Recall that if F = P i +Qj = ∇f , then

P =
∂f

∂x
, Q =

∂f

∂y

Example Find f if F(x , y) = (y2 − 2x)i + 2xy j

1.
∂f

∂x
= y2 − 2x so taking antiderivatives in x

f (x , y) = y2x − x2 + C (y)

where C (y) is a constant that may depend on y

2. From the answer we found in step 1,
∂f

∂y
= 2xy + C ′(y) = 2xy so

C ′(y) = 0

3. Finally, f (x , y) = xy2 − x2 + C
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Line Integrals of Conservative Vector Fields

Recall that if F = P i +Qj = ∇f , then

P =
∂f

∂x
, Q =

∂f

∂y

Example: Find
∫
C F · dr by finding f so that ∇f = F if:

F(x , y) = (1 + xy)exy i + x2exy j

C : r(t) = cos ti + 2 sin tj, 0 ≤ t ≤ π/2
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