Math 213 - Green's Theorem

Peter A. Perry

University of Kentucky

November 28, 2018

Homework

- Read Section 16.5 for Friday
- Work on Stewart problems for 16.4: 1-13 (odd), 17, 19, 21-27, 29
- Finish Homework D1 due tonight
- Begin Homework D2 due Friday
- Study for Quiz 10 on 16.1–16.3 tomorrow in recitation

Unit IV: Vector Calculus

Lecture 35	Vector Fields
Lecture 36	Line Integrals I
Lecture 37	Line Integrals II
Lecture 38	Fundamental Theorem
Lecture 39	Green's Theorem
Lecture 40	Curl and Divergence

Goals of the Day

- Understand positive and negative orientations of a simple, closed, plane curve
- Understand Green's Theorem
- Use Green's Theorem to compute line integrals and area integrals
- Understand how Green's Theorem connects with Conservative Vector Fields

Who Was Green?

George Green (1793–1841) was a British mathematical physicist who studied electricity and magnetism. From Wikipedia (where else?):

Green was the first person to create a mathematical theory of electricity and magnetism and his theory formed the foundation for the work of other scientists such as James Clerk Maxwell, William Thomson, and others. His work on potential theory ran parallel to that of Carl Friedrich Gauss.

Green's life story is remarkable in that he was almost entirely self-taught. He received only about one year of formal schooling as a child, between the ages of 8 and 9.

This last word on Green comes from the Mactutor History of Mathematics' article about him:

Through Thomson [Lord Kelvin], [James Clerk] Maxwell, and others, the general mathematical theory of potential developed by an obscure, self-taught miller's son would lead to the mathematical theories of electricity underlying twentieth-century industry.

Closed Curves, Simple Curves, Oriented Curves

region An open subset of the xy plane

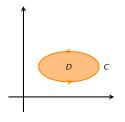
closed curve A curve whose initial and terminal points are the same

simple curve A curve that doesn't intersect itself

simply connected A connected region so that every simple closed curve in D

region surrounds only points of D

A simple closed curve C surrounding a region D is positively oriented (or has positive orientation) if the curve C traverses D counterclockwise with the enclosed region to the left



At left, the region D is surrounded by the positively oriented curve C. Which of these parameterizations gives C the correct orientation?

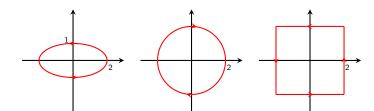
1.
$$x(t) = 1 + 1.5\cos(t)$$
, $y(t) = 0.5\sin t$, $0 < t < 2\pi$

2.
$$x(t) = 1 + 1.5\cos(2\pi - t)$$

 $y(t) = 0.5\sin(2\pi - t)$,
 $0 < t < 2\pi$

Orientation Implies Parameterization

In what we do this week, it will be important to *parameterize* curves so that you get the *orientation* right. Can you give a correct parameterization for each of the following oriented curves? Which is positively oriented, and which is negatively oriented?



Green's Theorem

Green's Theorem Let C be a positive oriented, piecewise smooth, simple closed curve in the plane and let D be the region bounded by C. If P(x,y) and Q(x,y) have continuous partial derivatives in an open region that contains D, then

$$\iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA = \int_C P dx + Q dy$$

Compare this to the Fundamental Theorem of Calculus, Part 2 from Math 113: If F is continuous on [a,b] and differentiable in (a,b), then

$$\int_a^b F'(x) dx = F(b) - F(a)$$

Green's Theorem

Compare the formulas:

$$\iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA = \int_{C} P dx + Q dy \qquad \text{(Green's Theorem)}$$

$$\int_{a}^{b} F'(x) dx = F(b) - F(a) \qquad \text{(FTC, Part II)}$$

- In Green's theorem, C bounds the region D, sometimes written $C = \partial D$
- In FTC, the endpoints a and b bound the interval [a, b]
- In Green's theorem, the integral of a 'derivative' of the vector field $\mathbf{F}(x,y) = P(x,y)\mathbf{i} + Q(x,y)\mathbf{j}$ equals the line integral of the vector field \mathbf{F} over the boundary
- In FTC, the integral of the derivative of F equals a difference of values of F over the boundary

Green's Theorem

The integral around a *closed* curve C of $P(x,y)\,dx+Q(x,y)$, dy is sometimes denoted

$$\oint_C P(x,y) dx + Q(x,y) dy$$

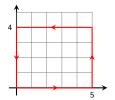
With this notation, the main formula in Green's theorem says

$$\iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA = \oint_C P dx + Q dy$$

where C is a positively oriented curve that bounds D

$$\iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA = \oint_{C} P dx + Q dy$$

where C is a positively oriented curve that bounds D



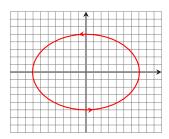
Evaluate directly and then use Green's theorem to find

$$\oint_C y^2 dx + x^2 y dy$$

if C is the path shown at left

$$\iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dA = \oint_C P \, dx + Q \, dy$$

where C is a positively oriented curve that bounds D



Use Green's theorem to find

$$\oint_C y^4 dx + 2xy^3 dy$$

if C is the ellipse $x^2 + 2y^2 = 2$

$$\iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA = \oint_{C} P dx + Q dy$$

where C is a positively oriented curve that bounds D

Recall that if D has area A,

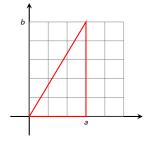
$$\overline{x} = \frac{1}{A} \int_{D} x \, dA$$

$$\overline{y} = \frac{1}{A} \int_{D} y \, dA$$

Using Green's theorem, show that

$$\overline{x} = \frac{1}{2A} \oint_C x^2 \, dy$$

$$\overline{y} = -\frac{1}{2A} \oint_C y^2 \, dx$$



Using the formulas

$$\overline{x} = \frac{1}{2A} \oint_C x^2 \, dy$$

$$\overline{y} = -\frac{1}{2A} \oint_C y^2 \, dx$$

find the centroid of the triangle shown at left.

Green's Theorem and Conservative Vector Fields

We can now prove a Theorem from Lecture 38.

Theorem Let $\mathbf{F} = P\mathbf{i} + Q\mathbf{j}$ be a vector field on an open, simply connected region D. Suppose that P and Q have continuous first-order partial derivatives and

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} \text{ throughout } D.$$

Then **F** is conservative.

Proof. If C is any closed path, and D is the domain it encloses,

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \oint_C P \, dx + Q \, dy = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dA = 0.$$

so the integral around any closed path in D is zero. This means we can pick a point (a,b) in D and define

$$f(x,y) = \int_{(a,b)}^{(x,y)} P \, dx + Q \, dy.$$

The function f(x, y) satisfies $\nabla f(x, y) = P(x, y)\mathbf{i} + Q(x, y)\mathbf{j}$.

