Math 213 - The Cross Product

Peter A. Perry
University of Kentucky

August 29, 2018

Homework

- Webwork A1 is due tonight
- Webwork A2 is due next Wednesday night
- Re-read section 12.4, pp. 814-821
- Begin work on pp. 821-823, 1-13 (odd), 16, 17, 19, 29-41 (odd)
- Remember to access WebWork only through Canvas!

Also, read section 12.5, pp. 823-830 for Friday. We'll spend two lectures on this material

Unit I: Geometry and Motion in Space

Lecture 1	Three-Dimensional Coordinate Systems
Lecture 2	Vectors
Lecture 3	The Dot Product
Lecture 4	The Cross Product
Lecture 5	Equations of Lines and Planes, Part I
Lecture 6	Equations of Lines and Planes, Part II
Lecture 7	Cylinders and Quadric Surfaces
Lecture 8	Vector Functions and Space Curves
Lecture 9	Derivatives and Integrals of Vector Functions
Lecture 10	Arc Length and Curvature
Lecture 11	Motion in Space: Velocity and Acceleration
Lecture 12	Exam 1 Review

Goals of the Day

- Know how to compute determinants of orders 2 and 3
- Know how to compute the cross product $\mathbf{a} \times \mathbf{b}$ of two vectors using determinants and understand its geometric meaning
- Learn the properties of the cross product
- Understand the scalar triple product and its geometric meaning
- Understand how to use cross products to compute torque

Determinants

We'll need to know how to compute the determinant of a 2×2 or 3×3 matrix. A determinant of order 2 is defined by

$$
\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right|=a_{1} b_{2}-a_{2} b_{1}
$$

Find the following determinants:

$$
\left|\begin{array}{cc}
2 & 1 \\
4 & -6
\end{array}\right|, \quad\left|\begin{array}{cc}
4 & -6 \\
2 & 1
\end{array}\right|, \quad\left|\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right|
$$

Determinants, Continued

A determinant of order 3 is defined by

$$
\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|=a_{1}\left|\begin{array}{ll}
b_{2} & b_{3} \\
c_{2} & c_{3}
\end{array}\right|-a_{2}\left|\begin{array}{ll}
b_{1} & c_{3} \\
c_{1} & c_{3}
\end{array}\right|+a_{3}\left|\begin{array}{ll}
b_{1} & b_{2} \\
c_{1} & c_{2}
\end{array}\right|
$$

For an illustration of this formula, see this Khan Academy Video
For a shortcut method that many students like, see this Khan Academy Video
Find, using your favorite method:

$$
\left|\begin{array}{ccc}
1 & -4 & -2 \\
2 & 0 & 4 \\
-1 & 2 & 3
\end{array}\right|
$$

If $\mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\mathbf{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$, then the cross product of \mathbf{a} and \mathbf{b} is the vector

$$
\mathbf{a} \times \mathbf{b}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
$$

Find $\mathbf{a} \times \mathbf{b}$ if $\mathbf{a}=\langle 1,0,2\rangle$ and $\mathbf{b}=\langle 1,1,1\rangle$.
$\mathbf{a} \times \mathbf{b}$

If $\mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\mathbf{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$, then the cross product of \mathbf{a} and \mathbf{b} is the vector

$$
\mathbf{a} \times \mathbf{b}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
$$

Find $\mathbf{a} \times \mathbf{b}$ if $\mathbf{a}=\langle 1,0,2\rangle$ and $\mathbf{b}=\langle 1,1,1\rangle$.

$$
\mathbf{a} \times \mathbf{b}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 0 & 2 \\
1 & 1 & 1
\end{array}\right|
$$

If $\mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\mathbf{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$, then the cross product of \mathbf{a} and \mathbf{b} is the vector

$$
\mathbf{a} \times \mathbf{b}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
$$

Find $\mathbf{a} \times \mathbf{b}$ if $\mathbf{a}=\langle 1,0,2\rangle$ and $\mathbf{b}=\langle 1,1,1\rangle$.

$$
\begin{aligned}
\mathbf{a} \times \mathbf{b} & =\left|\begin{array}{lll}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 0 & 2 \\
1 & 1 & 1
\end{array}\right| \\
& =\mathbf{i}\left|\begin{array}{ll}
0 & 2 \\
1 & 1
\end{array}\right|-\mathbf{j}\left|\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right|+\mathbf{k}\left|\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right|
\end{aligned}
$$

If $\mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\mathbf{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$, then the cross product of \mathbf{a} and \mathbf{b} is the vector

$$
\mathbf{a} \times \mathbf{b}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
$$

Find $\mathbf{a} \times \mathbf{b}$ if $\mathbf{a}=\langle 1,0,2\rangle$ and $\mathbf{b}=\langle 1,1,1\rangle$.

$$
\begin{aligned}
\mathbf{a} \times \mathbf{b} & =\left|\begin{array}{lll}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 0 & 2 \\
1 & 1 & 1
\end{array}\right| \\
& =\mathbf{i}\left|\begin{array}{ll}
0 & 2 \\
1 & 1
\end{array}\right|-\mathbf{j}\left|\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right|+\mathbf{k}\left|\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right| \\
& =-2 \mathbf{i}+\mathbf{j}+\mathbf{k}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{a} & =\mathbf{i}+0 \mathbf{j}+2 \mathbf{k} \\
\mathbf{b} & =\mathbf{i}+\mathbf{j}+\mathbf{k} \\
\mathbf{a} \times \mathbf{b} & =-2 \mathbf{i}+\mathbf{j}+\mathbf{k}
\end{aligned}
$$

What are $\mathbf{a} \cdot(\mathbf{a} \times \mathbf{b})$ and $\mathbf{b} \cdot(\mathbf{a} \times \mathbf{b})$?
What is $\mathbf{b} \times \mathbf{a}$?

$$
\begin{aligned}
\mathbf{a} & =\mathbf{i}+0 \mathbf{j}+2 \mathbf{k} \\
\mathbf{b} & =\mathbf{i}+\mathbf{j}+\mathbf{k} \\
\mathbf{a} \times \mathbf{b} & =-2 \mathbf{i}+\mathbf{j}+\mathbf{k}
\end{aligned}
$$

What are $\mathbf{a} \cdot(\mathbf{a} \times \mathbf{b})$ and $\mathbf{b} \cdot(\mathbf{a} \times \mathbf{b})$?
What is $\mathbf{b} \times \mathbf{a}$?

Cross Product Properties

1. The cross product $\mathbf{a} \times \mathbf{b}$ is perpendicular to \mathbf{a} and \mathbf{b} with direction given by the right-hand rule
2. $|\mathbf{a} \times \mathbf{b}|$ is the area of the parallelogram spanned by \mathbf{a} and \mathbf{b}, i.e.,

$$
|\mathbf{a} \times \mathbf{b}|=|\mathbf{a}||\mathbf{b}| \sin \theta
$$

3. Two vectors \mathbf{a} and \mathbf{b} are parallel if and only if $\mathbf{a} \times \mathbf{b}=0$
4. Find $\mathbf{i} \times \mathbf{j}, \mathbf{i} \times \mathbf{k}$, and $\mathbf{j} \times \mathbf{k}$
5. Use this result to find $(2 \mathbf{j}-4 \mathbf{k}) \times(-\mathbf{i}+3 \mathbf{j}+\mathbf{k})$
6. Which of the following expressions is meaningful?

$$
\begin{array}{rr}
\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c}) & \mathbf{a} \times(\mathbf{b} \times \mathbf{c}) \\
\mathbf{a} \times(\mathbf{b} \times \mathbf{c}) & \mathbf{a} \cdot(\mathbf{b} \cdot \mathbf{c}) \\
(\mathbf{a} \cdot \mathbf{b}) \times(\mathbf{c} \cdot \mathbf{d}) & (\mathbf{a} \times \mathbf{b}) \cdot(\mathbf{c} \times \mathbf{d})
\end{array}
$$

Cross Product Properties

Can you fill in the blanks?
If \mathbf{a}, \mathbf{b}, and \mathbf{c} are vectors and if c is a scalar:

1. $\mathbf{a} \times \mathbf{b}=-\mathbf{b} \times \mathbf{a}$
2. $(\mathbf{c} \mathbf{a}) \times \mathbf{b}={ }_{-}(\mathbf{a} \times \mathbf{b})=\mathbf{a} \times\left(_\right)$
3. $\mathbf{a} \times(\mathbf{b}+\mathbf{c})=$
4. $(\mathbf{a}+\mathbf{b}) \times \mathbf{c}=$
5. $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$
6. $\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \cdot \mathbf{c}) \mathbf{b}-(\mathbf{a} \cdot \mathbf{b}) \mathbf{c}$

Cross Product Puzzlers

Find the area of the parallelogram with vertices

$$
\begin{array}{ll}
P(1,0,2), & Q(3,3,3) \\
R(7,5,8), & S(5,2,7)
\end{array}
$$

Cross Product Puzzlers

Find the area of the parallelogram with vertices

$$
\begin{array}{ll}
P(1,0,2), & Q(3,3,3) \\
R(7,5,8), & S(5,2,7)
\end{array}
$$

Note that:

$$
\begin{aligned}
& \overrightarrow{P Q}=\langle 2,3,1\rangle \\
& \overrightarrow{P S}=\langle 4,2,5\rangle
\end{aligned}
$$

Cross Product Puzzlers

Find a nonzero vector orthogonal to to the plane through $P(1,0,1)$, $Q(-2,1,3)$, and $R(4,2,5)$ and find
 the area of triangle $P Q R$

Cross Product Puzzlers

Find a nonzero vector orthogonal to to the plane through $P(1,0,1)$, $Q(-2,1,3)$, and $R(4,2,5)$ and find
 the area of triangle $P Q R$

Two sides of the triangle are spanned by:

$$
\begin{aligned}
& \overrightarrow{P R}=\langle 3,2,4\rangle \\
& \overrightarrow{P Q}=\langle-3,1,2\rangle
\end{aligned}
$$

Cross Product Puzzlers

Find a nonzero vector orthogonal to to the plane through $P(1,0,1)$, $Q(-2,1,3)$, and $R(4,2,5)$ and find
 the area of triangle $P Q R$

Two sides of the triangle are spanned by:

$$
\begin{aligned}
& \overrightarrow{P R}=\langle 3,2,4\rangle \\
& \overrightarrow{P Q}=\langle-3,1,2\rangle
\end{aligned}
$$

The cross product is:

$$
\overrightarrow{P Q} \times \overrightarrow{P R}=\langle 0,18,-9\rangle
$$

(not drawn to scale!)

Scalar Triple Product

The scalar triple product of three vectors \mathbf{a}, \mathbf{b}, and \mathbf{c} is the determinant

$$
\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|
$$

The volume of the parallelepiped formed by the vectors \mathbf{a}, \mathbf{b}, and \mathbf{c} is given by

$$
|\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})| .
$$

What happens if the vectors \mathbf{a}, \mathbf{b}, and \mathbf{c} are coplanar?

Triple Product Puzzler

Find the volume of the parallelepiped with adjacent edges $P Q$, $P R$, and $P S$ if

$$
\begin{gathered}
P=P(-2,1,0), \quad Q=Q(2,3,2) \\
R=R(1,4,-1) \quad S=S(3,6,1)
\end{gathered}
$$

Triple Product Puzzler

Find the volume of the parallelepiped with adjacent edges $P Q$, $P R$, and $P S$ if

$$
\begin{gathered}
P=P(-2,1,0), \quad Q=Q(2,3,2) \\
R=R(1,4,-1) \quad S=S(3,6,1)
\end{gathered}
$$

$$
\begin{aligned}
\overrightarrow{P Q} & =\langle 4,2,2\rangle \\
\overrightarrow{P R} & =\langle 3,3,-1\rangle \\
\overrightarrow{P S} & =\langle 5,5,1\rangle
\end{aligned}
$$

Torque

If a force \mathbf{F} acts on a rigid body at a position \mathbf{r}, the torque τ is given by

$$
\tau=\mathbf{r} \times \mathbf{F}
$$

The torque vector points along the axis of rotation
Two friends sit on a see-saw. Friend 1 weighs 100 N and sits 2 m to the left of the fulcrum, while friend 2 was 50 N and sits 5 m to the right of the fulcrum. Find the torques and predict which way the see-saw will go.

