Calculus I Meets Calculus III

Peter A. Perry
University of Kentucky

December 3, 2018

Homework

- Begin Homework D3 due Wednesday, December 5
- Review for Final Exam on Thursday, December 13, 6:00-8:00 PM
- Be sure you know which room to go to for the final!

Final Exam Room Assignments

Sections 001-008	BE 111
Sections 009-013	BS 107
Sections 014-016	KAS 213

The Big Picture

Unit I Vectors and Space Curves
Unit II Differential Calculus
Unit III Double and Triple Integrals
Unit IV Calculus of Vector Fields

Goals of the Day

- Review what you learned in Calculus I
- Connect it with what you learned in Calculus III
- Organize your review for the Final

Today we'll mainly talk about differential calculus

Calculus I

Calculus I was about functions of one variable

Calculus I

Calculus I was about functions of one variable

- The graph of a function $y=f(x)$ is a curve in the $x y$ plane with points $(x, f(x))$

Calculus I

Calculus I was about functions of one variable

- The graph of a function $y=f(x)$ is a curve in the $x y$ plane with points ($x, f(x)$)
- The derivative $f^{\prime}(x)$ of a function $f(x)$ is the slope of the tangent line to the graph of f at $(x, f(x))$

Calculus I

Calculus I was about functions of one variable

- The graph of a function $y=f(x)$ is a curve in the $x y$ plane with points ($x, f(x)$)
- The derivative $f^{\prime}(x)$ of a function $f(x)$ is the slope of the tangent line to the graph of f at $(x, f(x))$
- The integral

$$
\int_{a}^{b} f(x) d x
$$

gives the (net) area under the graph of f between $x=a$ and $x=b$

The Derivative - Calculus I

The derivative $f^{\prime}(x)$ of a function $f(x)$ tells us:

The Derivative - Calculus I

The derivative $f^{\prime}(x)$ of a function $f(x)$ tells us:

- When a function is increasing or decreasing

The Derivative - Calculus I

The derivative $f^{\prime}(x)$ of a function $f(x)$ tells us:

- When a function is increasing or decreasing
- When a function has local maxima or local minima

The Derivative - Calculus I

The derivative $f^{\prime}(a)$ of a function $f(x)$ also gives us a linear approximation to the function f near $x=a$:

The Derivative - Calculus I

The derivative $f^{\prime}(a)$ of a function $f(x)$ also gives us a linear approximation to the function f near $x=a$:

$$
L(x)=f(a)+f^{\prime}(a)(x-a)
$$

The Second Derivative - Calculus I

$$
y=f^{\prime \prime}(x)
$$

The second derivative $f^{\prime \prime}(x)$ tells us:

The Second Derivative - Calculus I

$$
y=f^{\prime \prime}(x)
$$

The second derivative $f^{\prime \prime}(x)$ tells us:

- When the graph of f is concave up, and when it is concave down

The Second Derivative - Calculus I

$$
y=f^{\prime \prime}(x)
$$

The second derivative $f^{\prime \prime}(x)$ tells us:

- When the graph of f is concave up, and when it is concave down
- When critical points are local maxima, and when they are local minima

Optimization - Calculus I

To find the absolute maximum and absolute minimum of a function $f(x)$ on an interval $[a, b]:$

Optimization - Calculus I

To find the absolute maximum and absolute minimum of a function $f(x)$ on an interval $[a, b]:$

1. Find the interior critical points of f

Optimization - Calculus I

To find the absolute maximum and absolute minimum of a function $f(x)$ on an interval $[a, b]:$

1. Find the interior critical points of f
2. Test f at the interior critical points

Optimization - Calculus I

To find the absolute maximum and absolute minimum of a function $f(x)$ on an interval $[a, b]:$

1. Find the interior critical points of f
2. Test f at the interior critical points
3. Test f at the endpoints a and b

Optimization - Calculus I

To find the absolute maximum and absolute minimum of a function $f(x)$ on an interval $[a, b]:$

1. Find the interior critical points of f
2. Test f at the interior critical points
3. Test f at the endpoints a and b
4. The largest value of f in the list is its absolute maximum, and the smallest value of f in the list is its absolute minimum

Why Calculus I is So Easy

- There is only one variable to change, and so only one rate of change
- The domain of a function of one variable is typically an interval with two endpoints

Calculus III

Calculus III is about functions of two (or more) variables

Calculus III

Calculus III is about functions of two (or more) variables

- The graph of a function

$$
z=f(x, y)
$$

is a surface in $x y z$ space with points $(x, y, f(x, y))$

Calculus III

Calculus III is about functions of two (or more) variables

- The graph of a function

$$
z=f(x, y)
$$

is a surface in $x y z$ space with points ($x, y, f(x, y)$)

- You can also visualize a function of two variables through its contour plot

Calculus III

Calculus III is about functions of two (or more) variables

- The graph of a function

$$
z=f(x, y)
$$

is a surface in $x y z$ space with points ($x, y, f(x, y)$)

- You can also visualize a function of two variables through its contour plot
- The derivative of a function of two variables is the gradient vector

$$
(\nabla f)(x, y)=\left\langle\frac{\partial f}{\partial x}(x, y), \frac{\partial f}{\partial y}(x, y)\right\rangle
$$

The Derivative - Calculus III

The gradient vector $(\nabla f)(a, b)$:

- Has magnitude equal to the maximum rate of change of f at (a, b)
- Points in the direction of greatest change of f at (a, b)
- Is the zero vector at critical points of f

The Derivative - Calculus III

The gradient vector $(\nabla f)(a, b)$:

- Has magnitude equal to the maximum rate of change of f at (a, b)
- Points in the direction of greatest change of f at (a, b)
- Is the zero vector at critical points of f

The Derivative - Calculus II

The gradient vector also gives us a linear approximation to the function f near $(x, y)=(a, b):$

The Derivative - Calculus II

$$
f(x, y)=\sqrt{4-x^{2}-y^{2}}
$$

$$
\begin{aligned}
& L(x, y)=\sqrt{2} \\
& \quad-\frac{1}{\sqrt{2}}(x-1)-\frac{1}{\sqrt{2}}(y-1)
\end{aligned}
$$

The gradient vector also gives us a linear approximation to the function f near $(x, y)=(a, b)$:

$$
\begin{aligned}
& L(x, y)=f(a, b)+ \\
& \qquad \frac{\partial f}{\partial x}(a, b)(x-a)+\frac{\partial f}{\partial y}(a, b)(y-b)
\end{aligned}
$$

The Derivative - Calculus II

$$
f(x, y)=\sqrt{4-x^{2}-y^{2}}
$$

$$
L(x, y)=\sqrt{2}
$$

$$
-\frac{1}{\sqrt{2}}(x-1)-\frac{1}{\sqrt{2}}(y-1)
$$

The gradient vector also gives us a linear approximation to the function f near $(x, y)=(a, b)$:

$$
\begin{aligned}
& L(x, y)=f(a, b)+ \\
& \qquad \frac{\partial f}{\partial x}(a, b)(x-a)+\frac{\partial f}{\partial y}(a, b)(y-b)
\end{aligned}
$$

It may help to think of this formula as

$$
L(x, y)=f(a, b)+(\nabla f)(a, b) \cdot\langle x-a, y-b\rangle
$$

to compare with

$$
L(x)=f(a)+f^{\prime}(a)(x-a)
$$

The Second Derivative - Calculus II

If the first derivative is a vector, the second derivative is a matrix!
$($ Hess $f)(a, b)=\left(\begin{array}{ll}\frac{\partial^{2} f}{\partial x^{2}}(a, b) & \frac{\partial^{2} f}{\partial x \partial y}(a, b) \\ \frac{\partial^{2} f}{\partial y \partial x}(a, b) & \frac{\partial^{2} f}{\partial y^{2}}(a, b)\end{array}\right)$
The determinant of the Hessian at a critical point is:

- Positive at a local extremum
- Negative at a saddle

The second derivative $\frac{\partial^{2} f}{\partial x^{2}}(a, b)$ is

- Positive at a local minimum of f
- Negative at a local maximum of f

The Second Derivative - Calculus II

If the first derivative is a vector, the second derivative is a matrix!
$($ Hess $f)(a, b)=\left(\begin{array}{cc}\frac{\partial^{2} f}{\partial x^{2}}(a, b) & \frac{\partial^{2} f}{\partial x \partial y}(a, b) \\ \frac{\partial^{2} f}{\partial y \partial x}(a, b) & \frac{\partial^{2} f}{\partial y^{2}}(a, b)\end{array}\right)$
The determinant of the Hessian at a critical point is:

- Positive at a local extremum
- Negative at a saddle

The second derivative $\frac{\partial^{2} f}{\partial x^{2}}(a, b)$ is

- Positive at a local minimum of f
- Negative at a local maximum of f

Maxima and Minima in Calculus I and III

Second Derivative Test - Functions of One Variable

$f(x)=x^{2}, f^{\prime \prime}(0)>0$

$f(x)=-x^{3}, f^{\prime \prime}(0)<0$

$f(x)=x^{3}, f^{\prime \prime}(0)=0$

Second Derivative Test - Functions of Two Variables

$$
\begin{gathered}
f(x, y)=x^{2}+y^{2}, D=4 \\
f_{x x}(0)=2
\end{gathered}
$$

$f(x, y)=-\left(x^{2}+y^{2}\right), D=4$,
$f_{x x}(0)=-2$

$f(x, y)=x^{2}-y^{2}, D=-4$

Optimization - Calculus III

To find the absolute maximum and minimum of a function $f(x, y)$ on a domain D :

Example: Optimize the function $f(x, y)=x^{2}-y^{2}$ on the domain

$$
D=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}
$$

Optimization - Calculus III

To find the absolute maximum and minimum of a function $f(x, y)$ on a domain D :

- Find the interior critical points of f

Example: Optimize the function $f(x, y)=x^{2}-y^{2}$ on the domain

$$
D=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}
$$

$$
\nabla f(x, y)=\langle 2 x,-2 y\rangle
$$

Optimization - Calculus III

To find the absolute maximum and minimum of a function $f(x, y)$ on a domain D :

- Find the interior critical points of f
- Test f at the interior critical points

Example: Optimize the function $f(x, y)=x^{2}-y^{2}$ on the domain

$$
D=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}
$$

$$
\begin{aligned}
& \nabla f(x, y)=\langle 2 x,-2 y\rangle \\
& f(0,0)=0
\end{aligned}
$$

Optimization - Calculus III

To find the absolute maximum and minimum of a function $f(x, y)$ on a domain D :

- Find the interior critical points of f
- Test f at the interior critical points
- Use one-variable optimization to find the maximum and minimum of f on each component of the boundary

Example: Optimize the function $f(x, y)=x^{2}-y^{2}$ on the domain

$$
D=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}
$$

$$
\begin{aligned}
& \nabla f(x, y)=\langle 2 x,-2 y\rangle \\
& f(0,0)=0 \\
& \text { Parameterize circle: } \\
& x(t)=\cos (t), y(t)=\sin (t) \\
& g(t)=\cos ^{2} t-\sin ^{2} t \\
& g^{\prime}(t)=-4 \cos (t) \sin (t)
\end{aligned}
$$

Optimization - Calculus III

To find the absolute maximum and minimum of a function $f(x, y)$ on a domain D :

- Find the interior critical points of f
- Test f at the interior critical points
- Use one-variable optimization to find the maximum and minimum of f on each component of the boundary
- The largest value of f in this list is its absolute maximum, and the smallest value of f in this list is its absolute minimum

Example: Optimize the function $f(x, y)=x^{2}-y^{2}$ on the domain

$$
D=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}
$$

$$
\begin{aligned}
& \nabla f(x, y)=\langle 2 x,-2 y\rangle \\
& f(0,0)=0 \\
& \text { Parameterize circle: } \\
& x(t)=\cos (t), y(t)=\sin (t) \\
& g(t)=\cos ^{2} t-\sin ^{2} t \\
& g^{\prime}(t)=-4 \cos (t) \sin (t) \\
& g(0)=g(\pi)=1 \\
& g(\pi / 2)=g(3 \pi / 2)=-1
\end{aligned}
$$

