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Homework

• Finish Homework D3 due Tonight

• Review for Final Exam on Thursday, December 13,
6:00-8:00 PM

• Be sure you know which room to go to for the final!
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Final Exam Room Assignments

Sections 001-008 BE 111

Sections 009-013 BS 107

Sections 014-016 KAS 213
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The Big Picture

Unit I Vectors and Space Curves
Unit II Differential Calculus
Unit III Double and Triple Integrals
Unit IV Calculus of Vector Fields
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Goals of the Day

• Remember the Big Lessons of Calculus I

• Remember all the Integrals from Calculus III

• Review how to Compute Them

Today we’ll mainly talk about integral calculus
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Fundamental Theorems

a b

Fundamental Theorem of Calculus∫ b

a
F ′(x) dx = F (b)− F (a)

x

y

C

(x1, y1)

(x2, y2)

Fundamental Theorem of Line Inte-
grals

∫
C
∇f · dr = f (x2, y2)− f (x1, y1)
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Fundamental Theorems

a b

Fundamental Theorem of Calculus∫ b

a
F ′(x) dx = F (b)− F (a)

x

y

D

C
Green’s Theorem

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA =

∮
C
P dx+Q dy
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Fundamental Mantra

Fundamental Mantra of Integral Calculus Anything that
can be approximated as a Riemann sum can be computed as
a Riemann integral

Area under the graph of f (x)
∫ b
a f (x) dx

Area between graphs of f and g
∫ b
a f (x)− g(x) dx

Volumes by Washers V =
∫

π
[
f (x)2 − g(x)2

]
dx

Volumes by Shells V =
∫

2πx f (x) dx

Arc length of y = f (x)
∫ b
a

√
1 + f ′(x)2 dx

Arc length x = x(t), y = y(t)
∫ b
a

√
x ′(t)2 + y ′(t)2 dt
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All The Integrals In Calculus III

Group I - Iterated Integrals

Volume under z = (x , y) over D
∫∫

D f (x , y) dA

Integral of f (x , y , z) over E
∫∫∫

E f (x , y , z) dV

Group II - Parameterized Integrals

Integral of f (x , y) over C
∫
C f (x , y) ds,∫
C f (x , y) dx ,

∫
C f (x , y)dy

Integral of f (x , y , z) over C
∫
C f (x , y , z) ds

Integral of F(x , y , z) over C
∫
C F(x , y , z) · dr
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Group I: Iterated Integrals

Techniques:

• Iterated integrals for Type I and Type II regions in the xy
plane

• Polar coordinates for double integrals

• Iterated integrals for Type I, Type II, and Type III regions in
xyz space

• Cylindrical and Spherical Coordinates

• Change of Variables Theorem
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Type I and Type II regions in the xy plane

y

x

Find
∫∫

D x cos(y) dA if D is bounded by

y = 0, y = x2, x = 1

y

x

Find
∫∫

D y dA if D is the triangle with
vertices (0, 0), (1, 1), and (4, 0)
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Polar Coordinates

2

5

x

y

Write
∫∫

D f (x , y) dA as an iterated in-
tegral in polar coordinates if D is the
region shown at left.
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Type I, II and II regions in xyz space

x

y

z

x

Express the integral
∫∫∫

E f (x , y , z) dV
in three different ways if E is the solid
bounded by

y2 + z2 = 9,

x = −2, and x = 2
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Cylindrical and Spherical Coordinates

Graphic will be drawn manually!

Find
∫∫∫

E x2 dV if E is the solid that
lies:

• in the cylinder x2 + y2 = 1,

• above the plane z = 0, and

• below the cone z2 = 4x2 + 4y2

x

y

z

Find
∫∫∫

E y2 dV if E is the solid hemi-

sphere x2 + y2 + z2 = 9, y ≥ 0.
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Change of Variables Theorem

Recall if T : S → D then∫∫
D
f (x , y) dA =

∫∫
S
f (x(u, v), y(u, v))

∣∣∣∣ ∂(x , y)

∂(u, v)

∣∣∣∣ du dv

x

y

R

Find
∫∫

R x2 dA if R is the region
bounded by the ellipse

9x2 + 4y2 = 36.

Use the change of variables

x = 2u, y = 3v .
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Group II: Parameterized Integrals

∫
C
f (x , y) ds,

∫
C
f (x , y) dx ,

∫
C
f (x , y) dy ,

∫
C
F(x , y) · dr,∫

f (x , y , z) ds,
∫
C
F(x , y , z) · dr

C is always a parameterized curve:

r(t) = x(t)i+ y(t)j, a ≤ t ≤ b in two dimensions

r(t) = x(t)i+ y(t)j+ z(t)k, a ≤ t ≤ b in three dimensions

Evaluate f or F along the curve and use

dx = x ′(t) dt, dy = y ′(t) dt, dz = z ′(t) dt

ds =
√

x ′(t)2 + y ′(t)2 dt in two dimensions

ds =
√

x ′(t)2 + y ′(t)2 + z ′(t)2 dt in three dimensions
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Examples - Integrals in the Plane

Green’s Theorem Suppose that C is a positively oriented, piecewise
smooth curve surrounding a region D, and that P and Q have continuous
partial derivatives on an open region that contains D. Then∫

C
P dx +Q dy =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA

1. Find
∫
C y ds if C is given by x = t2, y = 2t, 0 ≤ t ≤ 3

2. Use Green’s theorem to find
∫
C (x

2 + y2) dx + (x2 − y2) dy if C is the
triangle with vertices (0, 0), (2, 1), and (0, 1).
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Examples - Integrals in xyz Space

1. Find
∫
C xyeyz ds if C is the line segment from (0, 0, 0) to (1, 2, 3)

2. Find
∫
C y dx + z dy + x dz if C is the curve x =

√
t, y = t, z = t2,

1 ≤ t ≤ 4
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