Calculus I Meets Calculus III, Part II: How to Compute Almost Any Integral

Peter A. Perry
University of Kentucky

December 5, 2018

Homework

- Finish Homework D3 due Tonight
- Review for Final Exam on Thursday, December 13, 6:00-8:00 PM
- Be sure you know which room to go to for the final!

Final Exam Room Assignments

Sections 001-008	BE 111
Sections 009-013	BS 107
Sections 014-016	KAS 213

The Big Picture

Unit I Vectors and Space Curves
Unit II Differential Calculus
Unit III Double and Triple Integrals
Unit IV Calculus of Vector Fields

Goals of the Day

- Remember the Big Lessons of Calculus I
- Remember all the Integrals from Calculus III
- Review how to Compute Them

Today we'll mainly talk about integral calculus

Fundamental Theorems

Fundamental Theorem of Calculus

$$
\int_{a}^{b} F^{\prime}(x) d x=F(b)-F(a)
$$

Fundamental Theorems

Fundamental Theorem of Calculus

$$
\int_{a}^{b} F^{\prime}(x) d x=F(b)-F(a)
$$

Fundamental Theorem of Line Integrals

$$
\int_{C} \nabla f \cdot d \mathbf{r}=f\left(x_{2}, y_{2}\right)-f\left(x_{1}, y_{1}\right)
$$

Fundamental Theorems

Fundamental Theorem of Calculus

$$
\int_{a}^{b} F^{\prime}(x) d x=F(b)-F(a)
$$

Fundamental Theorems

Fundamental Theorem of Calculus

$$
\int_{a}^{b} F^{\prime}(x) d x=F(b)-F(a)
$$

Green's Theorem

$$
\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A=\oint_{C} P d x+Q d y
$$

Fundamental Mantra

Fundamental Mantra of Integral Calculus Anything that can be approximated as a Riemann sum can be computed as a Riemann integral

Area under the graph of $f(x) \quad \int_{a}^{b} f(x) d x$
Area between graphs of f and $g \quad \int_{a}^{b} f(x)-g(x) d x$
Volumes by Washers
Volumes by Shells
Arc length of $y=f(x)$
Arc length $x=x(t), y=y(t)$

$$
V=\int \pi\left[f(x)^{2}-g(x)^{2}\right] d x
$$

$$
V=\int 2 \pi x f(x) d x
$$

$$
\int_{a}^{b} \sqrt{1+f^{\prime}(x)^{2}} d x
$$

$$
\int_{a}^{b} \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t
$$

All The Integrals In Calculus III

Group I - Iterated Integrals

Volume under $z=(x, y)$ over D

$$
\text { Integral of } f(x, y, z) \text { over } E
$$

$$
\begin{aligned}
& \iint_{D} f(x, y) d A \\
& \iiint_{E} f(x, y, z) d V
\end{aligned}
$$

Group II - Parameterized Integrals
Integral of $f(x, y)$ over C

$$
\begin{aligned}
& \int_{C} f(x, y) d s, \\
& \int_{C} f(x, y) d x, \int_{C} f(x, y) d y \\
& \int_{C} f(x, y, z) d s \\
& \int_{C} \mathbf{F}(x, y, z) \cdot d \mathbf{r}
\end{aligned}
$$

Group I: Iterated Integrals

Techniques:

- Iterated integrals for Type I and Type II regions in the $x y$ plane
- Polar coordinates for double integrals
- Iterated integrals for Type I, Type II, and Type III regions in xyz space
- Cylindrical and Spherical Coordinates
- Change of Variables Theorem

Type I and Type II regions in the $x y$ plane

Find $\iint_{D} x \cos (y) d A$ if D is bounded by $y=0, y=x^{2}, x=1$

Find $\iint_{D} y d A$ if D is the triangle with vertices $(0,0),(1,1)$, and $(4,0)$

Polar Coordinates

Write $\iint_{D} f(x, y) d A$ as an iterated integral in polar coordinates if D is the region shown at left.

Type I, II and II regions in xyz space

Express the integral $\iiint_{E} f(x, y, z) d V$ in three different ways if E is the solid bounded by

$$
\begin{gathered}
y^{2}+z^{2}=9, \\
x=-2, \text { and } x=2
\end{gathered}
$$

Cylindrical and Spherical Coordinates

Find $\iiint_{E} x^{2} d V$ if E is the solid that lies:

- in the cylinder $x^{2}+y^{2}=1$,
- above the plane $z=0$, and
- below the cone $z^{2}=4 x^{2}+4 y^{2}$

Find $\iiint_{E} y^{2} d V$ if E is the solid hemisphere $x^{2}+y^{2}+z^{2}=9, y \geq 0$.

Change of Variables Theorem

Recall if $T: S \rightarrow D$ then

$$
\iint_{D} f(x, y) d A=\iint_{S} f(x(u, v), y(u, v))\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v
$$

Find $\iint_{R} x^{2} d A$ if R is the region bounded by the ellipse

$$
9 x^{2}+4 y^{2}=36
$$

Use the change of variables

$$
x=2 u, \quad y=3 v
$$

Group II: Parameterized Integrals

$$
\begin{aligned}
& \int_{C} f(x, y) d s, \int_{C} f(x, y) d x, \\
& \int_{C} f(x, y) d y, \quad \int_{C} \mathbf{F}(x, y) \cdot d \mathbf{r} \\
& \int f(x, y, z) d s, \\
& \int_{C} \mathbf{F}(x, y, z) \cdot d \mathbf{r}
\end{aligned}
$$

C is always a parameterized curve:

$$
\begin{array}{lll}
\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}, & a \leq t \leq b & \\
\mathbf{i n} \text { two dimensions } \\
\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}, & a \leq t \leq b & \\
\text { in three dimensions }
\end{array}
$$

Evaluate f or \mathbf{F} along the curve and use

$$
\begin{aligned}
& d x=x^{\prime}(t) d t, \quad d y=y^{\prime}(t) d t, \quad d z=z^{\prime}(t) d t \\
& d s=\sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t \text { in two dimensions } \\
& d s=\sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}+z^{\prime}(t)^{2}} d t \text { in three dimensions }
\end{aligned}
$$

Examples - Integrals in the Plane

Green's Theorem Suppose that C is a positively oriented, piecewise smooth curve surrounding a region D, and that P and Q have continuous partial derivatives on an open region that contains D. Then

$$
\int_{C} P d x+Q d y=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A
$$

1. Find $\int_{C} y d s$ if C is given by $x=t^{2}, y=2 t, 0 \leq t \leq 3$
2. Use Green's theorem to find $\int_{C}\left(x^{2}+y^{2}\right) d x+\left(x^{2}-y^{2}\right) d y$ if C is the triangle with vertices $(0,0),(2,1)$, and $(0,1)$.

Examples - Integrals in xyz Space

1. Find $\int_{C} x y e^{y z} d s$ if C is the line segment from $(0,0,0)$ to $(1,2,3)$
2. Find $\int_{C} y d x+z d y+x d z$ if C is the curve $x=\sqrt{t}, y=t, z=t^{2}$, $1 \leq t \leq 4$
