▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

# Calculus I Meets Calculus III, Part II: How to Compute Almost Any Integral

Peter A. Perry

University of Kentucky

December 5, 2018

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで



- Finish Homework D3 due Tonight
- Review for Final Exam on Thursday, December 13, 6:00-8:00 PM
- Be sure you know which room to go to for the final!

liemann Sums

Iterated

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Parameterized

## Final Exam Room Assignments

| Sections 001-008 | BE 111  |
|------------------|---------|
| Sections 009-013 | BS 107  |
| Sections 014-016 | KAS 213 |

Iterate

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Parameterized

## The Big Picture

- Unit I Vectors and Space Curves
- Unit II Differential Calculus
- Unit III Double and Triple Integrals
- Unit IV Calculus of Vector Fields

Parameterized

## Goals of the Day

- Remember the Big Lessons of Calculus I
- Remember all the Integrals from Calculus III
- Review how to Compute Them

Today we'll mainly talk about integral calculus

Learning Goals

Fundamental Theorems

Riemann Sums

Iterated

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Parameterized

## **Fundamental Theorems**

#### **Fundamental Theorem of Calculus**

$$\int_{a}^{b} F'(x) \, dx = F(b) - F(a)$$



ā

Ь

## **Fundamental Theorems**



$$\int_{a}^{b} F'(x) \, dx = F(b) - F(a)$$



Fundamental Theorem of Line Integrals

$$\int_{C} \nabla f \cdot d\mathbf{r} = f(\mathbf{x_2}, \mathbf{y_2}) - f(\mathbf{x_1}, \mathbf{y_1})$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

Learning Goals

Fundamental Theorems

Riemann Sums

Iterated

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Parameterized

## **Fundamental Theorems**

#### **Fundamental Theorem of Calculus**

$$\int_{a}^{b} F'(x) \, dx = F(b) - F(a)$$



ā

Ь

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

## **Fundamental Theorems**

### Fundamental Theorem of Calculus

$$\int_a^b F'(x) \, dx = F(b) - F(a)$$



## Fundamental Mantra

**Fundamental Mantra of Integral Calculus** Anything that can be *approximated* as a Riemann sum can be *computed* as a Riemann integral

Area under the graph of f(x)Area between graphs of f and gVolumes by Washers Volumes by Shells Arc length of y = f(x)Arc length x = x(t), y = y(t)

 $\int_{a}^{b} f(x) dx$   $\int_{a}^{b} f(x) - g(x) dx$   $V = \int \pi \left[ f(x)^{2} - g(x)^{2} \right] dx$   $V = \int 2\pi x f(x) dx$   $\int_{a}^{b} \sqrt{1 + f'(x)^{2}} dx$   $\int_{a}^{b} \sqrt{x'(t)^{2} + y'(t)^{2}} dt$ 

## All The Integrals In Calculus III

### Group I - Iterated Integrals

Volume under z = (x, y) over D $\iint_D f(x, y) dA$ Integral of f(x, y, z) over E $\iint_E f(x, y, z) dV$ 

### **Group II - Parameterized Integrals**

Integral of f(x, y) over C $\int_C f(x, y) ds$ ,<br/> $\int_C f(x, y) dx$ ,  $\int_C f(x, y) dy$ Integral of f(x, y, z) over C $\int_C f(x, y, z) ds$ Integral of  $\mathbf{F}(x, y, z)$  over C $\int_C \mathbf{F}(x, y, z) \cdot d\mathbf{r}$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

# Group I: Iterated Integrals

Techniques:

- Iterated integrals for Type I and Type II regions in the *xy* plane
- Polar coordinates for double integrals
- Iterated integrals for Type I, Type II, and Type III regions in *xyz* space
- Cylindrical and Spherical Coordinates
- Change of Variables Theorem

liemann Sums

Iterated

Parameterized

# Type I and Type II regions in the xy plane



Find  $\iint_D x \cos(y) dA$  if D is bounded by  $y = 0, y = x^2, x = 1$ 



Find  $\iint_D y \, dA$  if *D* is the triangle with vertices (0,0), (1,1), and (4,0)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

liemann Sum

Iterated

Parameterized

## Polar Coordinates



Write  $\iint_D f(x, y) dA$  as an iterated integral in polar coordinates if D is the region shown at left.

◆□ > ◆□ > ◆三 > ◆三 > 三 - のへで

liemann Sums

Parameterized

## Type I, II and II regions in xyz space



Express the integral  $\iiint_E f(x, y, z) dV$ in three different ways if E is the solid bounded by

> $y^2 + z^2 = 9$ , x = -2, and x = 2

> > ▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

## Cylindrical and Spherical Coordinates

Graphic will be drawn manually!

Find  $\iiint E x^2 dV$  if *E* is the solid that lies:

- in the cylinder  $x^2 + y^2 = 1$ ,
- above the plane z = 0, and
- below the cone  $z^2 = 4x^2 + 4y^2$



Find  $\iiint_E y^2 dV$  if E is the solid hemisphere  $x^2 + y^2 + z^2 = 9$ ,  $y \ge 0$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

## Change of Variables Theorem

Recall if  $T: S \rightarrow D$  then

$$\iint_{D} f(x, y) \, dA = \iint_{S} f(x(u, v), y(u, v)) \left| \frac{\partial(x, y)}{\partial(u, v)} \right| \, du \, dv$$



Find  $\iint_R x^2 dA$  if *R* is the region bounded by the ellipse

$$9x^2 + 4y^2 = 36$$

Use the change of variables

$$x = 2u$$
,  $y = 3v$ .

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

## Group II: Parameterized Integrals

$$\int_{C} f(x, y) \, ds, \quad \int_{C} f(x, y) \, dx, \quad \int_{C} f(x, y) \, dy, \quad \int_{C} \mathbf{F}(x, y) \cdot \, d\mathbf{r},$$
$$\int f(x, y, z) \, ds, \quad \int_{C} \mathbf{F}(x, y, z) \cdot \, d\mathbf{r}$$

C is always a parameterized curve:

$$\begin{split} \mathbf{r}(t) &= x(t)\mathbf{i} + y(t)\mathbf{j}, & a \leq t \leq b & \text{in two dimensions} \\ \mathbf{r}(t) &= x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}, & a \leq t \leq b & \text{in three dimensions} \end{split}$$

Evaluate f or  $\mathbf{F}$  along the curve and use

$$dx = x'(t) dt, \quad dy = y'(t) dt, \quad dz = z'(t) dt$$
$$ds = \sqrt{x'(t)^2 + y'(t)^2} dt \text{ in two dimensions}$$
$$ds = \sqrt{x'(t)^2 + y'(t)^2 + z'(t)^2} dt \text{ in three dimensions}$$

## Examples - Integrals in the Plane

**Green's Theorem** Suppose that C is a positively oriented, piecewise smooth curve surrounding a region D, and that P and Q have continuous partial derivatives on an open region that contains D. Then

$$\int_{C} P \, dx + Q \, dy = \iint_{D} \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dA$$

1. Find  $\int_C y \, ds$  if C is given by  $x = t^2$ , y = 2t,  $0 \le t \le 3$ 

2. Use Green's theorem to find  $\int_C (x^2 + y^2) dx + (x^2 - y^2) dy$  if C is the triangle with vertices (0,0), (2,1), and (0,1).

## Examples - Integrals in xyz Space

- 1. Find  $\int_C xye^{yz} ds$  if C is the line segment from (0,0,0) to (1,2,3)
- 2. Find  $\int_C y \, dx + z \, dy + x \, dz$  if C is the curve  $x = \sqrt{t}$ , y = t,  $z = t^2$ ,  $1 \le t \le 4$