Math 213 - Lines and Planes (Part I of II)

Peter A. Perry

University of Kentucky

August 31, 2018

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Homework

- Re-read section 12.5, pp. 823-830
- Begin work on pp. 831–833, problems 1-11 (odd), 17-31 (odd), 37, 39, 45, 49, 51, 53, 55, 63, 64, 67, 69, 71, 73

Unit I: Geometry and Motion in Space

- Lecture 1 Three-Dimensional Coordinate Systems
- Lecture 2 Vectors
- Lecture 3 The Dot Product
- Lecture 4 The Cross Product
- Lecture 5 Equations of Lines and Planes, Part I
- Lecture 6 Equations of Lines and Planes, Part II
- Lecture 7 Cylinders and Quadric Surfaces
- Lecture 8 Vector Functions and Space Curves
- Lecture 9 Derivatives and Integrals of Vector Functions
- Lecture 10 Arc Length and Curvature
- Lecture 11 Motion in Space: Velocity and Acceleration
- Lecture 12 Exam 1 Review

Goals of the Day

- Learn how to write the parametric equation of a line
- Learn how to write the symmetric equation of a line
- Learn how to write the vector equation of a plane
- Learn how to write the scalar equation of a plane

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A line L in three-dimensional space is determined by

(日)、

æ

A line *L* in three-dimensional space is determined by

• A point **r**₀ = (*x*₀, *y*₀, *z*₀) on the line

(日)、

A line *L* in three-dimensional space is determined by

- A point $\mathbf{r}_0 = (x_0, y_0, z_0)$ on the line
- A vector v = (a, b, c) that gives the direction of the line

イロト 不得 トイヨト イヨト

A line *L* in three-dimensional space is determined by

- A point $\mathbf{r}_0 = (x_0, y_0, z_0)$ on the line
- A vector v = (a, b, c) that gives the direction of the line

Any point P on the line can be expressed as

$\mathbf{r}_0 + t\mathbf{v}$

for some real number *t* called the *parameter*

lf

$$\mathbf{r}_0 = \langle x_0, y_0, z_0
angle, \quad \mathbf{v} = \langle a, b, c
angle,$$

the function

 $\mathbf{r}(t) = \mathbf{r}_0 + t\mathbf{v}$

traces out a line through

 $P = (x_0, y_0, z_0)$

in the direction of

 $\mathbf{v} = \langle a, b, c \rangle$

・ロト ・ 雪 ト ・ ヨ ト

Line - Parametric Equation

If
$$\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle$$

then

$$x(t) = x_0 + at$$

$$y(t) = y_0 + bt$$

$$z(t) = z_0 + ct$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Line - Parametric Equation

If $\mathbf{r}(t) = \langle x(t), y(t), z(t)
angle$ then

$$x(t) = x_0 + at$$

$$y(t) = y_0 + bt$$

$$z(t) = z_0 + ct$$

gives the parametric equations for a line through $P(x_0, y_0, z_0)$ in direction $\langle a, b, c \rangle$

- 1. Find the parametric equations of a line L through the points P(1, 2, -1) and Q(2, 3, 4).
- 2. Find the parametric equations of the line L through the point (1, 2, 3)and parallel to the vector (2, -3, 4)

Line - Symmetric Equation

If we begin with the parametric equations of a line:

$$x(t) = x_0 + at$$

$$y(t) = y_0 + bt$$

$$z(t) = z_0 + ct$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Line - Symmetric Equation

If we begin with the parametric equations of a line:

$$x(t) = x_0 + at$$

$$y(t) = y_0 + bt$$

$$z(t) = z_0 + ct$$

we can eliminate the parameter to get the symmetric equation of a line;

$$\frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{z-z_0}{c}$$

The numbers (a, b, c) are the *direction numbers* of the line.

Line - Symmetric Equation

If we begin with the parametric equations of a line:

$$x(t) = x_0 + at$$

$$y(t) = y_0 + bt$$

$$z(t) = z_0 + ct$$

we can eliminate the parameter to get the symmetric equation of a line;

$$\frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{z-z_0}{c}$$

The numbers (a, b, c) are the *direction numbers* of the line.

- 1. Find the parametric and symmetric equations of the line through the origin and the point (4,3,-1)
- 2. Find the parametric and symmetric equations of the line through (2, 1, 0) and perpendicular to both i + j and j + k.

х

z

Q

Line - Parametric Equation Line - Symmetric Equation Plane - Vector Equation Plane - Scalar Equation

・ロト ・ 日 ト ・ モ ト ・ モ ト

æ

Plane - Vector Equation

V

A plane is the collection of all points Q:

Passing through given point $P_0(x_0, y_0, z_0)$

・ロト ・聞ト ・ヨト ・ヨト

æ

A *plane* is the collection of all points *Q*:

- Passing through given point $P_0(x_0, y_0, z_0)$
- Having the property that $\overrightarrow{P_0Q}$ is perpendicular to a vector **n**, the normal vector

ヘロト ヘ週ト ヘヨト ヘヨト

A *plane* is the collection of all points *Q*:

- Passing through given point $P_0(x_0, y_0, z_0)$
- Having the property that $\overline{P_0 Q}$ is perpendicular to a vector **n**, the normal vector

That is

$$\mathbf{n} \cdot \overrightarrow{P_0 Q} = \mathbf{0}$$

ヘロト ヘ週ト ヘヨト ヘヨト

A *plane* is the collection of all points *Q*:

- Passing through given point $P_0(x_0, y_0, z_0)$
- Having the property that $\overline{P_0 Q}$ is perpendicular to a vector **n**, the normal vector

That is

$$\mathbf{n}\cdot\overrightarrow{P_0Q}=\mathbf{0}$$

If
$$\mathbf{r}_0 = \overrightarrow{OP_0}$$
, $\mathbf{r} = \overrightarrow{OQ}$, then...

ヘロト ヘ週ト ヘヨト ヘヨト

A *plane* is the collection of all points *Q*:

- Passing through given point $P_0(x_0, y_0, z_0)$
- Having the property that $\overrightarrow{P_0Q}$ is perpendicular to a vector **n**, the normal vector

That is

$$\mathbf{n}\cdot\overrightarrow{P_0Q}=\mathbf{0}$$

If
$$\mathbf{r}_0 = \overrightarrow{OP_0}$$
, $\mathbf{r} = \overrightarrow{OQ}$, then...

$$\mathbf{n} \cdot (\mathbf{r} - \mathbf{r}_0) = \mathbf{0}$$
 OR $\mathbf{n} \cdot \mathbf{r} = \mathbf{n} \cdot \mathbf{r}_0$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Plane - Scalar Equation

A *plane* is the collection of all points *Q*:

- Passing through given point $P_0(x_0, y_0, z_0)$
- Having the property that $\overrightarrow{P_0Q}$ is perpendicular to a vector **n**, the *normal vector* That is

$$\mathbf{n} \cdot \overrightarrow{P_0 Q} = \mathbf{0}$$

(日)、

Plane - Scalar Equation

A *plane* is the collection of all points *Q*:

- Passing through given point $P_0(x_0, y_0, z_0)$
- Having the property that $\overrightarrow{P_0Q}$ is perpendicular to a vector **n**, the *normal vector* That is

$$\mathbf{n}\cdot\overrightarrow{P_0Q}=\mathbf{0}$$

If
$$Q = (x, y, z)$$
, $\mathbf{n} = \langle a, b, c \rangle$, then ...

(日)、

Plane - Scalar Equation

A *plane* is the collection of all points *Q*:

- Passing through given point P₀(x₀, y₀, z₀)
- Having the property that $\overrightarrow{P_0Q}$ is perpendicular to a vector **n**, the *normal vector* That is

$$\mathbf{n}\cdot\overrightarrow{P_0Q}=\mathbf{0}$$

If
$$Q = (x, y, z)$$
, $\mathbf{n} = \langle a, b, c \rangle$, then ...

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Plane Puzzlers

Let

$$P_0 = P_0(x_0, y_0, z_0), \quad \mathbf{n} = \langle \mathbf{a}, \mathbf{b}, \mathbf{c} \rangle, \quad P = P(x, y, z)$$

The **vector equation** of the plane through P_0 with normal **n** is

 $\mathbf{n} \cdot \mathbf{r} = \mathbf{n} \cdot \mathbf{r}_0$

where **r** and \mathbf{r}_0 are position vectors for *P* and *P*₀ respectively. The **scalar equation** of the plane through *P*₀ with normal **n** is

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

- 1. Find the vector equation of a plane through the origin and perpendicular to the vector $\langle -1,2,5\rangle$
- 2. Find the scalar equation of the plane through (1, -1, -1) and parallel to the plane 5x y z = 6
- 3. Find the equation of the plane that contains the line x = 1 + t, y = 2 - t, z = 4 - 3t and is parallel to the plane 5x + 2y + z = 1