Math 213 - Lines and Planes (Part II of II)

Peter A. Perry

University of Kentucky

September 5, 2018

Homework

- Webwork A2 on 12.4, the cross product, is due tonight
- Webwork A3 on 12.5, equations of lines and planes, is due Friday
- Re-re-read section 12.5, pp. 823-830
- Finish work on pp. 831-833, problems 1-11 (odd), 17-31 (odd), $37,39,45,49,51,53,55$, 63, 64, 67, 69, 71, 73
- Review from last term: section 10.5 on conic sections
- Read section 12.6, pp. 834-839

Unit I: Geometry and Motion in Space

Lecture 1	Three-Dimensional Coordinate Systems
Lecture 2	Vectors
Lecture 3	The Dot Product
Lecture 4	The Cross Product
Lecture 5	Equations of Lines and Planes, Part I
Lecture 6	Equations of Lines and Planes, Part II
Lecture 7	Cylinders and Quadric Surfaces
Lecture 8	Vector Functions and Space Curves
Lecture 9	Derivatives and Integrals of Vector Functions
Lecture 10	Arc Length and Curvature
Lecture 11	Motion in Space: Velocity and Acceleration
Lecture 12	Exam 1 Review

Goals of the Day

- Review dot, cross, and triple scalar products
- Review equations of lines and planes
- Sketch and visualize lines and planes
- Learn how find the distance from a point to a plane

Dot Product, Cross Product, Triple Product

	Formula	Type	Geometry	Zero if...
Dot	$\mathbf{a} \cdot \mathbf{b}$	Scalar	Projections	a, b orthogonal
Cross	$\mathbf{a} \times \mathbf{b}$	Vector	Area of a Parallelogram	a, b parallel
Triple	$\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})$	Scalar	Volume of a Parallelepiped	$\mathbf{a , b}, \mathbf{c}$ coplanar

Lines and Planes

To specify the equation of a line L, you need:

To specify the equation of a plane, you need:

Lines and Planes

To specify the equation of a line L, you need:

- A point $\left(x_{0}, y_{0}, z_{0}\right)$ on L

To specify the equation of a plane, you need:

Lines and Planes

To specify the equation of a line L, you need:

- A point $\left(x_{0}, y_{0}, z_{0}\right)$ on L
- A vector $\langle a, b, c\rangle$ in the direction of L

To specify the equation of a plane, you need:

Lines and Planes

To specify the equation of a line L, you need:

- A point $\left(x_{0}, y_{0}, z_{0}\right)$ on L
- A vector $\langle a, b, c\rangle$ in the direction of L

To specify the equation of a plane, you need:

- A point $\left(x_{0}, y_{0}, z_{0}\right)$ on the plane

Lines and Planes

To specify the equation of a line L, you need:

- A point $\left(x_{0}, y_{0}, z_{0}\right)$ on L
- A vector $\langle a, b, c\rangle$ in the direction of L

To specify the equation of a plane, you need:

- A point $\left(x_{0}, y_{0}, z_{0}\right)$ on the plane
- A vector $\mathbf{n}=\langle a, b, c\rangle$ normal to the plane

Hot Tip - Planes Made Simple

The equation of a plane is

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0
$$

or

$$
a x+b y+c z=d
$$

Step 1. Determine $\langle a, b, c\rangle$ from geometry
Step 2. Find d by substituting in x_{0}, y_{0}, z_{0}

Example: Find the equation of a plane parallel to the plane

$$
x-y+2 z=0
$$

through the point $(2,2,2)$.

Hot Tip - Planes Made Simple

The equation of a plane is

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0
$$

or

$$
a x+b y+c z=d
$$

Step 1. $\begin{aligned} & \text { Determine }\langle a, b, c\rangle \text { from } \\ & \text { geometry }\end{aligned}$
Step 2. Find d by substituting in x_{0}, y_{0}, z_{0}

Example: Find the equation of a plane orthogonal to the line

$$
(x, y, z)=(-7,0,0)+t(-7,3,3)
$$

which passes through the point $(0,0,-7)$. Give your answer in the form $a x+b y+c z=d$ where $a=7$.

Hot Tip - Sketching Planes Made Simple

The equation of a plane is

$$
a x+b y+c z=d
$$

Hot Tip - Sketching Planes Made Simple

The equation of a plane is

$$
a x+b y+c z=d
$$

To sketch the plane with this equation, you can find the x-, y-, and z-intercepts from the equation:

$$
x=d / a, \quad y=d / b, \quad z=d / c
$$

Hot Tip - Sketching Planes Made Simple

The equation of a plane is

$$
a x+b y+c z=d
$$

To sketch the plane with this equation, you can find the x-, y-, and z-intercepts from the equation:

$$
x=d / a, \quad y=d / b, \quad z=d / c
$$

Sketch the part of the plane

$$
2 x+y+3 z=4
$$

in the first octant and label the $x-, y$-, and z-intercepts.

Intersecting, Parallel, and Skew Lines

In two-dimensional space, two lines
L_{1} and L_{2} can be

Intersecting, Parallel, and Skew Lines

In two-dimensional space, two lines
L_{1} and L_{2} can be

- parallel, or

Intersecting, Parallel, and Skew Lines

In two-dimensional space, two lines
L_{1} and L_{2} can be

- parallel, or
- intersecting

Intersecting, Parallel, and Skew Lines

In two-dimensional space, two lines
L_{1} and L_{2} can be

- parallel, or
- intersecting

In three dimensions, two lines L_{1} and L_{2} can be

Intersecting, Parallel, and Skew Lines

In two-dimensional space, two lines
L_{1} and L_{2} can be

- parallel, or
- intersecting

In three dimensions, two lines L_{1} and L_{2} can be

- parallel,

Intersecting, Parallel, and Skew Lines

In two-dimensional space, two lines
L_{1} and L_{2} can be

- parallel, or
- intersecting

In three dimensions, two lines L_{1} and L_{2} can be

- parallel,
- skew, or

Intersecting, Parallel, and Skew Lines

In two-dimensional space, two lines
L_{1} and L_{2} can be

- parallel, or
- intersecting

In three dimensions, two lines L_{1} and L_{2} can be

- parallel,
- skew, or
- intersecting

Intersecting, Parallel, and Skew Lines

In two-dimensional space, two lines
L_{1} and L_{2} can be

- parallel, or
- intersecting

In three dimensions, two lines L_{1} and L_{2} can be

- parallel,
- skew, or
- intersecting

How do you tell which is which?

Intersecting, Parallel, and Skew Lines

$$
\mathbf{r}(t)=\mathbf{r}_{0}(t)+t \mathbf{v}
$$

- Two lines are parallel if the corresponding vectors \mathbf{v} are parallel
- If not parallel, two lines intersect if we can solve for the point of intersection
- If not parallel, and nonintersecting, they are skew

Determine whether the following pairs of lines are parallel, intersect, or are skew. If they intersect, find the points of intersection.

1. $L_{1}: x=2+s, \quad y=3-2 s, \quad z=1-3 s$

$$
L_{2}: x=3+t, \quad y=-4+3 t, \quad z=2-7 t
$$

2. $L_{1}: \frac{x}{1}=\frac{y-1}{-1}=\frac{z-1}{-3}$,

$$
L_{2}: \frac{x-2}{2}=\frac{y-3}{-2}=\frac{z}{7}
$$

Intersecting and Parallel Planes

Two planes either

Intersecting and Parallel Planes

Two planes either

- are parallel (if their normal vectors are parallel), or

Intersecting and Parallel Planes

Two planes either

- are parallel (if their normal vectors are parallel), or
- intersect in a line

Intersecting and Parallel Planes

Two planes either

- are parallel (if their normal vectors are parallel), or
- intersect in a line

A vector pointing along that line will be perpendicular to both normal vectors

Intersecting and Parallel Planes

Two planes either

- are parallel (if their normal vectors are parallel), or
- intersect in a line

A vector pointing along that line will be perpendicular to both normal vectors

Find the line of intersection between the planes

$$
x+2 y+3 z=1
$$

and

$$
x-y+z=1
$$

The Distance from a Point to a Plane

To find the distance D

The Distance from a Point to a Plane

To find the distance D from a point P_{1}

The Distance from a Point to a Plane

To find the distance D from a point P_{1} to a plane with normal vector \mathbf{n} containing a point P_{0} :

The Distance from a Point to a Plane

To find the distance D from a point P_{1} to a plane with normal vector \mathbf{n} containing a point P_{0} :
Let \mathbf{b} be the vector $\overrightarrow{P_{0} P_{1}}$

The Distance from a Point to a Plane

To find the distance D from a point P_{1} to a plane with normal vector \mathbf{n} containing a point P_{0} :
Let \mathbf{b} be the vector $\overrightarrow{P_{0} P_{1}}$
Then the distance D is given by $\mathrm{comp}_{\mathbf{n}} \mathbf{b}$, or

$$
D=\frac{|\mathbf{n} \cdot \mathbf{b}|}{|\mathbf{n}|}
$$

The Distance from a Point to a Plane

To find the distance D from a point P_{1} to a plane with normal vector \mathbf{n} containing a point P_{0} :
Let \mathbf{b} be the vector $\overrightarrow{P_{0} P_{1}}$
Then the distance D is given by comp $_{\mathbf{n}} \mathbf{b}$, or

$$
D=\frac{|\mathbf{n} \cdot \mathbf{b}|}{|\mathbf{n}|}
$$

If

$$
\begin{aligned}
& P_{1}=P_{1}\left(x_{1}, y_{1}, z_{1}\right), \\
& P_{0}=P_{0}\left(x_{0}, y_{0}, z_{0}\right),
\end{aligned}
$$

then

$$
\mathbf{b}=\left(x_{1}-x_{0}, y_{1}-y_{0}, z_{1}-z_{0}\right)
$$

The Distance from a Point to a Plane

$$
\begin{aligned}
D & =\frac{|\mathbf{n} \cdot \mathbf{b}|}{|\mathbf{n}|} \\
\mathbf{b} & =\left(x_{1}-x_{0}, y_{1}-y_{0}, z_{1}-z_{0}\right) \\
\mathbf{n} & =\langle a, b, c\rangle
\end{aligned}
$$

If the plane's equation is

$$
a x+b y+c z+d=0
$$

then

$$
\begin{aligned}
\mathbf{n} \cdot \mathbf{b} & =a\left(x_{1}-x_{0}\right)+b\left(y_{1}-y_{0}\right)+c\left(z_{1}-z_{0}\right) \\
& =a x_{1}+b y_{1}+c z_{1}+d
\end{aligned}
$$

so

$$
D=\frac{\left|a x_{1}+b y_{1}+c z_{1}+d\right|}{\sqrt{a^{2}+b^{2}+c^{2}}} .
$$

