Math 213 - Lines and Planes (Part II of II)

Peter A. Perry

University of Kentucky

September 5, 2018

Homework

- Webwork A2 on 12.4, the cross product, is due tonight
- Webwork A3 on 12.5, equations of lines and planes, is due Friday
- Re-re-read section 12.5, pp. 823–830
- Finish work on pp. 831–833, problems 1-11 (odd), 17-31 (odd), 37, 39, 45, 49, 51, 53, 55, 63, 64, 67, 69, 71, 73
- Review from last term: section 10.5 on conic sections
- Read section 12.6, pp. 834-839

Unit I: Geometry and Motion in Space

Lecture 1	Three-Dimensional Coordinate Systems
Lecture 2	Vectors
Lecture 3	The Dot Product
Lecture 4	The Cross Product
Lecture 5	Equations of Lines and Planes, Part I
Lecture 6	Equations of Lines and Planes, Part II
Lecture 7	Cylinders and Quadric Surfaces
Lecture 8	Vector Functions and Space Curves
Lecture 9	Derivatives and Integrals of Vector Functions
Lecture 10	Arc Length and Curvature
Lecture 11	Motion in Space: Velocity and Acceleration
Lecture 12	Exam 1 Review

Goals of the Day

- Review dot, cross, and triple scalar products
- Review equations of lines and planes
- Sketch and visualize lines and planes
- Learn how find the distance from a point to a plane

Dot Product, Cross Product, Triple Product

	Formula	Туре	Geometry	Zero if
Dot	a · b	Scalar	Projections	a, b orthogonal
Cross	$\mathbf{a} \times \mathbf{b}$	Vector	Area of a Parallelogram	a, b parallel
Triple	$\mathbf{a}\cdot(\mathbf{b}\times\mathbf{c})$	Scalar	Volume of a	a, b, c coplanar

To specify the equation of a **line** L, you need:

To specify the equation of a **line** L, you need:

• A point (x_0, y_0, z_0) on L

To specify the equation of a **line** L, you need:

- A point (x_0, y_0, z_0) on L
- A vector \(\lambda \, b, c \rangle \) in the direction of \(L \)

To specify the equation of a **line** L, you need:

- A point (x_0, y_0, z_0) on L
- A vector \(\lambda \, b \, c \rangle \) in the direction of \(L \)

To specify the equation of a **plane**, you need:

A point (x₀, y₀, z₀) on the plane

To specify the equation of a **line** L, you need:

- A point (x_0, y_0, z_0) on L
- A vector \(\lambda \, b \, c \rangle \) in the direction of \(L \)

- A point (x₀, y₀, z₀) on the plane
- A vector $\mathbf{n} = \langle a, b, c \rangle$ normal to the plane

Hot Tip - Planes Made Simple

The equation of a plane is

$$a(x-x_0) + b(y-y_0) + c(z-z_0) = 0$$

or

$$ax + by + cz = d$$

Step 2. Find d by substituting in x_0 , y_0 , z_0

Example: Find the equation of a plane parallel to the plane

$$x - y + 2z = 0$$

through the point (2, 2, 2).

Hot Tip - Planes Made Simple

The equation of a plane is

$$a(x-x_0) + b(y-y_0) + c(z-z_0) = 0$$

ax + bv + cz = d

or

Step 2. Find d by substituting in x_0 , y_0 , z_0

Example: Find the equation of a plane orthogonal to the line

$$(x, y, z) = (-7, 0, 0) + t(-7, 3, 3)$$

which passes through the point (0,0,-7). Give your answer in the form ax + by + cz = d where a = 7.

Hot Tip - Sketching Planes Made Simple

The equation of a plane is

$$ax + by + cz = d$$

Hot Tip - Sketching Planes Made Simple

The equation of a plane is

$$ax + by + cz = d$$

To sketch the plane with this equation, you can find the x-, y-, and z-intercepts from the equation:

$$x = d/a$$
, $y = d/b$, $z = d/c$

Hot Tip - Sketching Planes Made Simple

The equation of a plane is

$$ax + by + cz = d$$

To sketch the plane with this equation, you can find the x-, y-, and z-intercepts from the equation:

$$x = d/a$$
, $y = d/b$, $z = d/c$

Sketch the part of the plane

$$2x + y + 3z = 4$$

in the first octant and label the x- , y-, and z-intercepts.

In two-dimensional space, two lines L_1 and L_2 can be

In two-dimensional space, two lines \mathcal{L}_1 and \mathcal{L}_2 can be

• parallel, or

In two-dimensional space, two lines L_1 and L_2 can be

- *parallel*, or
- intersecting

In two-dimensional space, two lines L_1 and L_2 can be

- parallel, or
- intersecting

In three dimensions, two lines L_1 and L_2 can be

In two-dimensional space, two lines L_1 and L_2 can be

- parallel, or
- intersecting

In three dimensions, two lines L_1 and L_2 can be

• parallel,

In two-dimensional space, two lines L_1 and L_2 can be

- parallel, or
- intersecting

In three dimensions, two lines L_1 and L_2 can be

- parallel,
- skew, or

In two-dimensional space, two lines L_1 and L_2 can be

- parallel, or
- intersecting

In three dimensions, two lines L_1 and L_2 can be

- parallel,
- skew, or
- intersecting

In two-dimensional space, two lines L_1 and L_2 can be

- parallel, or
- intersecting

In three dimensions, two lines L_1 and L_2 can be

- parallel,
- skew, or
- intersecting

How do you tell which is which?

$$\mathbf{r}(t) = \mathbf{r}_0(t) + t\mathbf{v}$$

- Two lines are parallel if the corresponding vectors **v** are parallel
- If not parallel, two lines intersect if we can solve for the point of intersection
- If not parallel, and nonintersecting, they are skew

Determine whether the following pairs of lines are parallel, intersect, or are skew. If they intersect, find the points of intersection.

1.
$$L_1: x = 2 + s$$
, $y = 3 - 2s$, $z = 1 - 3s$
 $L_2: x = 3 + t$, $y = -4 + 3t$, $z = 2 - 7t$

2.
$$L_1: \frac{x}{1} = \frac{y-1}{-1} = \frac{z-1}{-3},$$
 $L_2: \frac{x-2}{2} = \frac{y-3}{-2} = \frac{z}{7}$

Two planes either

Two planes either

 are parallel (if their normal vectors are parallel), or

Two planes either

- are parallel (if their normal vectors are parallel), or
- intersect in a line

Two planes either

- are parallel (if their normal vectors are parallel), or
- intersect in a line

A vector pointing along that line will be perpendicular to *both* normal vectors

Two planes either

- are parallel (if their normal vectors are parallel), or
- intersect in a line

A vector pointing along that line will be perpendicular to *both* normal vectors

Find the line of intersection between the planes

$$x + 2y + 3z = 1$$

and

$$x - y + z = 1$$

To find the distance D

To find the distance D from a point P_1

To find the distance D from a point P_1 to a plane with normal vector \mathbf{n} containing a point P_0 :

To find the distance D from a point P_1 to a plane with normal vector \mathbf{n} containing a point P_0 :

Let **b** be the vector $\overrightarrow{P_0P_1}$

To find the distance D from a point P_1 to a plane with normal vector \mathbf{n} containing a point P_0 :

Let **b** be the vector $\overrightarrow{P_0P_1}$

Then the distance D is given by $comp_n \mathbf{b}$, or

$$D = \frac{|\mathbf{n} \cdot \mathbf{b}|}{|\mathbf{n}|}$$

To find the distance D from a point P_1 to a plane with normal vector \mathbf{n} containing a point P_0 :

Let **b** be the vector $\overrightarrow{P_0P_1}$

Then the distance D is given by $comp_n \mathbf{b}$, or

$$D = \frac{|\mathbf{n} \cdot \mathbf{b}|}{|\mathbf{n}|}$$

lf

$$P_1 = P_1(x_1, y_1, z_1),$$

$$P_0 = P_0(x_0, y_0, z_0),$$

then

$$\mathbf{b} = (x_1 - x_0, y_1 - y_0, z_1 - z_0)$$

$$D = \frac{|\mathbf{n} \cdot \mathbf{b}|}{|\mathbf{n}|}$$

$$\mathbf{b} = (x_1 - x_0, y_1 - y_0, z_1 - z_0)$$

$$\mathbf{n} = \langle a, b, c \rangle$$

If the plane's equation is

$$ax + by + cz + d = 0$$

then

$$\mathbf{n} \cdot \mathbf{b} = a(x_1 - x_0) + b(y_1 - y_0) + c(z_1 - z_0)$$

= $ax_1 + by_1 + cz_1 + d$

so
$$D = \frac{|ax_1 + by_1 + cz_1 + d|}{\sqrt{a^2 + b^2 + c^2}}.$$