Quiz 6

Answer all questions in a clear and concise manner. Unsupported answers will receive *no credit*.

1. (2 points) Use the Chain Rule to find $\frac{dz}{dt}$ where $z = \sqrt{1 + xy}$, $x = t^2 + 1$, and y = 4t + 12. No need to simplify.

Solution: Recall
$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt}$$
 We find: $\frac{\partial z}{\partial x} = \frac{y}{2\sqrt{1+xy}}$, $\frac{\partial z}{\partial y} = \frac{x}{2\sqrt{1+xy}}$, $\frac{dx}{dt} = 2t$, and $\frac{dy}{dt} = 4$. Thus $\frac{dz}{dt} = \frac{ty}{\sqrt{1+xy}} + \frac{2x}{\sqrt{1+xy}} = \frac{ty+2x}{\sqrt{1+xy}}$.

2. (3 points) Find the directional derivative of the function $f(x,y) = x^2y + 4y\sin(x)$ at the point (0,2) in the direction of the **unit** vector $\mathbf{u} = \langle \frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}} \rangle$.

Solution:
$$D_u f(x,y) = \nabla f(x,y) \cdot u$$
,

$$\nabla f(x,y) = \langle f_x(x,y), f_y(x,y) \rangle$$

= $\langle 2xy + 4y \cos(x), x^2 + 4 \sin(x) \rangle$.

At the point (0,2) this gives $\nabla f(0,2) = \langle 8,0 \rangle$, so

$$D_u f(0,2) = \langle 8, 0 \rangle \cdot \langle \frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}} \rangle$$
$$= 8 \cdot \frac{1}{\sqrt{5}} + 0 \cdot \frac{2}{\sqrt{5}}$$
$$= \frac{8}{\sqrt{5}}.$$