MA 213 Worksheet #25

Section 16.4 29/11/18

- 1. 16.4.1,3 Evaluate the line integral by two methods: (i) directly and (ii) using Green's Theorem.
 - (a) $\oint_C y^2 dx + x^2 y dy$ where C is the rectangle with vertices (0,0), (5,0), (5,4), and (0,4).
- (b) $\oint_C xy \, dx + x^2 y^3 \, dy$ where C is the triangle with vertices (0,0),(1,0), and (1,2).
- 2. 16.4.7 Use Green's Theorem to evaluate

$$\oint_C (y + e^{\sqrt{x}}) dx + (2x + \cos y^2) dy$$

where C is the boundary of the region enclosed by the parabolas $y = x^2$ and $x = y^2$.

- 3. 16.4.13 Use Green's Theorem to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F} = \langle y \cos y, x \sin y \rangle$ and C is the circle $(x-3)^2 + (y+4)^2 = 4$ oriented clockwise.
- 4. 16.4.17 Use Green's Theorem to find the work done by the force $\vec{F}(x,y) = x(x+y)\vec{i} + xy^2\vec{j}$ in moving a particle from the origin along the x-axis to (1,0), then along the line segment to (0,1) and then back to the origin along the y-axis.