# Math 213 - Exam I Review 

Peter A. Perry<br>University of Kentucky

September 18, 2019

## Reminders

- Access your WebWork account only through Canvas!
- Homework A5 on section 13.1-13.2 is due tonight!
- Exam 1 takes place tonight at 5 PM. Section 17 will meet in CB 118, and sections 18 and 19 will meet in CB 122.


## Unit I: Geometry and Motion in Space

12.1 Lecture 1: Three-Dimensional Coordinate Systems
12.2 Lecture 2: Vectors in the Plane and in Space
12.3 Lecture 3:The Dot Product
12.4 Lecture 4:The Cross Product
12.5 Lecture 5: Equations of Lines and Planes, I
12.5 Lecture 6: Equations of Lines and Planes, II
12.6 Lecture 7: Surfaces in Space
13.1 Lecture 8: Vector Functions and Space Curves
13.2 Lecture 9 Derivatives and Integrals of Vector Functions

Lecture 10: Exam I Review

## Learning Goals

- Find out how to ace Exam I


## Dot Products and Cross Products

|  | Formula | Type | Geometry | Zero if... |
| :--- | :--- | :--- | :--- | :--- |
| Dot | $\mathbf{a} \cdot \mathbf{b}$ | Scalar | Projections | $\mathbf{a}, \mathbf{b}$ orthogonal |
| Cross | $\mathbf{a} \times \mathbf{b}$ | Vector | Area of $\mathbf{a}$ <br> Parallelogram | $\mathbf{a}, \mathbf{b}$ parallel |
| Triple | $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})$ | Scalar | Volume of $\mathbf{a}$ <br> Parallelepiped | $\mathbf{a}, \mathbf{b}, \mathbf{c}$ coplanar |

## Lines and Planes

## Equation of a Line

A line is specified by a point $P\left(x_{0}, y_{0}, z_{0}\right)$ that it contains and a vector $\mathbf{v}=\langle a, b, c\rangle$ that points along it

Parametric: $x(t)=x_{0}+a t, \quad y(t)=y_{0}+b t, \quad z(t)=z_{0}+c t$
Symmetric: $\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}$

## Equation of a Plane

A plane is specified by a point $P\left(x_{0}, y_{0}, z_{0}\right)$ in the plane and a vector $\mathbf{n}=\langle a, b, c\rangle$ that is normal to the plane

$$
a x+b y+c z=d
$$

where $a, b, c$ are the components of $\mathbf{n}$ and $d$ is determined by substituting in $\left(x_{0}, y_{0}, z_{0}\right)$

## Quadric Surfaces

Ellipsoid: $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$
Elliptic Paraboloid: $z=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$
Cone: $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=z^{2}$
Hyperboloid of One Sheet: $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$
Saddle: $z=\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}$
You may also see similar equations but with $x, y, z$ permuted or with the origin shifted
Know how to use the method of traces to identify a surface

## Vector Functions and Space Curves

## Vector Functions and Space Curves

A vector function takes the form

$$
\mathbf{r}(t)=\langle f(t), g(t)\rangle \quad \text { or } \quad \mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle
$$

A space curve is the path in two- or three-dimensional space traced out by a vector function $\mathbf{r}(t)$ for a certain range of $t$

The tangent vector to a space curve is the vector

$$
\mathbf{r}^{\prime}(t)=\left\langle f^{\prime}(t), g^{\prime}(t)\right\rangle \quad \text { or } \quad \mathbf{r}^{\prime}(t)=\left\langle f^{\prime}(t), g^{\prime}(t), h^{\prime}(t)\right\rangle
$$

The tangent vector $\mathbf{r}^{\prime}(a)$ to a space curve gives its instantaneous rate of change at $t=a$ Its magnitude $\left|\mathbf{r}^{\prime}(a)\right|$ is the instantaneous speed of the space curve at $t=a$

To find the angle of intersection of two curves described by $\mathbf{r}_{1}(t)$ and $\mathbf{r}_{2}(t)$

- Find the time of intersection $t=a$
- Find the angle between the tangent vectors $\mathbf{r}_{1}^{\prime}(a)$ and $\mathbf{r}_{2}^{\prime}(a)$


## Vector Algebra

If $|\mathbf{a}|=3$ and $|\mathbf{b}|=6$ what is $|\mathbf{a}+\mathbf{b}|$ ?
If a river 50 m wide flows at $4 \mathrm{~m} / \mathrm{sec}$ and a swimmer swims straight from one bank toward the other at $5 \mathrm{~m} / \mathrm{sec}$, how far downstream will the swimmer end up? What distance will she/he swim?

Determine whether the triangle with vertices $P(1,0,1), Q(3,0,3), R(-1,0,1)$ is isosceles.

Determine whether the points $P(1,1,0), Q(3,1,2)$ and $R(4,2,2)$ are coplanar.

## Quadric Surfaces

Identify the surface

$$
z=x^{2}+2 x-y^{2}+2 y
$$

Identify the surface

$$
z^{2}-2 z+x^{2}+y^{2}-4 y=1
$$

Identify the surface

$$
y^{2}=x^{2}+z^{2}
$$

Identify the surface

$$
x^{2}=y
$$

Identify the surface

$$
4 x^{2}+9 y^{2}+z^{2}=36
$$

## Lines and Planes

Find the equation of a line segment from $P(1,-2,4)$ to $Q(3,2,3)$.
Determine whether the lines $\mathbf{r}_{1}(t)=\langle 1,2+2 t, 2+3 t\rangle$ and $\mathbf{r}_{2}(t)=\langle 3,2+5 t, 7-t\rangle$ are parallel, intersecting, or skew.

Find the equation of a plane containing the three points

$$
P(1,0,-1), \quad Q(2,3,4), \quad R(3,2,1) .
$$

Find the parametric equation of line of intersection between the planes

$$
x-y+z=5
$$

and

$$
2 x+y+z=6
$$

## Space Curves

Do the curves

$$
\mathbf{r}_{1}(s)=\left\langle s, 2 s-1, s^{2}\right\rangle
$$

and

$$
\mathbf{r}_{2}(t)=\left\langle t-1, t^{2}-3,(t-1)^{3}\right\rangle
$$

intersect? Do they collide?
Find the point where the curves

$$
\mathbf{r}_{1}(t)=\langle\cos t, \sin t, t\rangle
$$

and

$$
\mathbf{r}_{2}(t)=\left\langle t+1, t^{2}, t^{3}\right\rangle
$$

intersect, and angle of intersection between the curves.

## Open Mike

## Your questions?

## Reminders

- Your exam is 5 PM to 7 PM. There will be 10 multiple choice questions and 4 free-response questions.
- If you are in section 17, you should go to CB 118. If you are in sections 18 or 19 you should go to CB 122. Please arrive at least 10 minutes before the start of the exam and please have your student ID with you. Bring a one-page notebook-paper-sized sheet of formulas, notes, etc., if you wish.
- Raw scores should be posted in Canvas by late Thursday. We'll announce in Friday's class whether there will be a curve.
- You will receive your exam papers back in Tuesday's recitation.
- If you have any concerns about the grading on your exam, please turn in your exams with an explanatory note by the end of Tuesday's recitation. Regrading requests submitted after Tuesday recitation will not be considered.


## Good Luck!

