Math 213 - Linear Approximation

Peter A. Perry

University of Kentucky

September 27, 2019

Reminders

- Homework B2 on 14.3 is due tonight!

Unit II: Functions of Several Variables

13.3-4 Lecture 11: Velocity and Acceleration
14.1 Lecture 12: Functions of Several Variables
14.3 Lecture 13: Partial Derivatives
14.4 Lecture 14: Linear Approximation
14.5 Lecture 15: Chain Rule, Implicit Differentiation
14.6 Lecture 16: Directional Derivatives and the Gradient
14.7 Lecture 17: Maximum and Minimum Values, I
14.7 Lecture 18: Maximum and Minimum Values, II
14.8 Lecture 19: Lagrange Multipliers
15.1 Double Integrals
15.2 Double Integrals over General Regions

Exam II Review

Learning Goals

- Understand how the partial derivatives $f_{x}(a, b)$ and $f_{y}(a, b)$ define the tangent plane to the graph of $z=f(x, y)$ at $(a, b, f(a, b))$
- Understand how the partial derivatives $f_{x}(a, b)$ and $f_{y}(a, b)$ define the linear approximation $L(x, y)$ to $f(x, y)$ near $(x, y)=(a, b)$
- Understand the total differential $d z$ of a function $z=f(x, y)$ and how it's used to compute percentage change and analyze error
- Generalize these ideas to functions of three variables

Warm-Up: Linear Functions

The graph of a line $A x+B y=C$ defines a linear function of one variable

$$
y=f(x)=\frac{C}{B}-\frac{A}{C} x
$$

The graph of a plane $a x+b y+c z=d$ defines a linear function of two variables

$$
z=f(x, y)=\frac{d}{c}-\frac{a}{c} x-\frac{b}{c} y
$$

Functions of One Variable - Tangent Line

The derivative $f^{\prime}(a)$ gives the slope of the tangent line to the graph of $y=$ $f(x)$ at $(a, f(a))$.

The derivative $f^{\prime}(a)$ defines a linear function

$$
L(x)=f(a)+f^{\prime}(a)(x-a)
$$

the linear approximation to f near a
The differential of $y=f(x)$ is

$$
d y=f^{\prime}(x) d x
$$

Functions of One Variable - Differentiability

Recall that if $y=f(x)$, the increment of y as x changes from a to $a+\Delta x$ is

$$
\Delta y=f(a+\Delta x)-f(a)
$$

If f is differentiable at a, then

$$
\Delta y=f^{\prime}(a) \Delta x+\varepsilon \Delta x
$$

where

$$
\varepsilon \rightarrow 0 \text { as } \Delta x \rightarrow 0
$$

That is, the linear approximation is very good as $\Delta x \rightarrow 0$.

Derivatives - Two Variables

The derivatives $f_{x}(a, b)$ and $f_{y}(a, b)$ define a tangent plane to the graph of f at $(a, b, f(a, b))$

Derivatives - Two Variables

The derivatives $f_{x}(a, b)$ and $f_{y}(a, b)$ define a tangent plane to the graph of f at $(a, b, f(a, b))$

These derivatives define a linear function

$$
\begin{aligned}
L(x, y)= & f(a, b) \\
& +f_{x}(a, b)(x-a) \\
& +f_{y}(a, b)(x-b)
\end{aligned}
$$

the linear approximation to f near (a, b)

Derivatives - Two Variables

The derivatives $f_{x}(a, b)$ and $f_{y}(a, b)$ define a tangent plane to the graph of f at $(a, b, f(a, b))$

These derivatives define a linear function

$$
\begin{aligned}
L(x, y)= & f(a, b) \\
& +f_{x}(a, b)(x-a) \\
& +f_{y}(a, b)(x-b)
\end{aligned}
$$

the linear approximation to f near (a, b)
The differential of $z=f(x, y)$ is

$$
d z=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y
$$

Find the Tangent Plane

If f has continuous partial derivatives, the tangent plane to $z=f(x, y)$ at $(a, b, f(a, b))$ is

$$
z-f(a, b)=f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

(1) Find the equation of the tangent plane to the surface

$$
\begin{aligned}
& \quad z=2 x^{2}+y^{2}-5 y \\
& \text { at }(1,2,-4) \text {. }
\end{aligned}
$$

Find the Tangent Plane

If f has continuous partial derivatives, the tangent plane to $z=f(x, y)$ at $(a, b, f(a, b))$ is

$$
z-f(a, b)=f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

(1) Find the equation of the tangent plane to the surface

$$
\begin{aligned}
& \quad z=2 x^{2}+y^{2}-5 y \\
& \text { at }(1,2,-4) \text {. }
\end{aligned}
$$

(2) Find the equation of the tangent plane to the surface

$$
z=e^{x-y}
$$

at $(2,2,1)$.

The Tangent Plane Contains Tangent Lines

The red curves represent $f(a, y)$ and $f(x, b)$
The blue lines are the tangent lines

$$
\begin{aligned}
& r_{1}(t)=\langle a, b, f(a, b)\rangle+t\left\langle 1,0, f_{x}(a, b)\right\rangle \\
& r_{2}(t)=\langle a, b, f(a, b)\rangle+t\left\langle 0,1, f_{y}(a, b)\right\rangle
\end{aligned}
$$

The Tangent Plane Defines a Linear Approximation

The tangent line is the graph of a linear function

$$
L(x)=f(a)+f^{\prime}(a)(x-a)
$$

that approximates $f(x)$ near $x=a$

The tangent plane is the graph of a linear function

$$
\begin{aligned}
L(x, y)= & f(a, b)+ \\
& f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
\end{aligned}
$$

that approximates $f(x, y)$ near $(x, y)=(a, b)$

The Linear Approximation

The linear approximation to $f(x, y)$ at (a, b) is

$$
L(x, y)=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

(1) Show that the linear approximation to $f(x, y)=e^{x} \cos (x y)$ at $(0,0)$ is $L(x, y)=x+1$
(2) Suppose that $f(2,5)=6, f_{x}(2,5)=1$, and $f_{y}(2,5)=-1$. Use a linear approximation to estimate $f(2.2,4.9)$

Differentiability

If $z=f(x, y)$, the increment of z as x changes from a to $a+\Delta x$ and y changes from b to $b+\Delta y$ is:

$$
\Delta z=f(a+\Delta x, b+\Delta y)-f(a, b)
$$

f is differentiable at (a, b) if

$$
\Delta z=f_{x}(a, b) \Delta x+f_{y}(a, b) \Delta y+\varepsilon_{1} \Delta x+\varepsilon_{2} \Delta y
$$

where ε_{1} and ε_{2} approach 0 as $(\Delta x, \Delta y) \rightarrow(0,0)$.

Theorem If the partial derivatives f_{x} and f_{y} of f exist near (a, b), and are continuous at (a, b), then f is differentiable at (a, b).
(1) Explain why the function $f(x, y)=\sqrt{x y}$ is differentiable at $(1,4)$ and find its linearization

What Happens if f is not differentiable?

Let

$$
f(x, y)= \begin{cases}\frac{x y}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

Use the definition to check that $f_{x}(0,0)=f_{y}(0,0)=0$
Show that $f_{x}(x, y)$ and $f_{y}(x, y)$ are not continuous at $(0,0)$

Differentials

For a function f of one variable, the differential of $y=f(x)$ is given by

$$
d y=f^{\prime}(x) d x
$$

For a function f of two variables, the differential of $z=f(x, y)$ is

$$
d z=f_{x}(x, y) d x+f_{y}(x, y) d y=\frac{\partial z}{\partial x} d x+\frac{\partial z}{\partial y} d y
$$

1. The radius of a circle is measured as 10 cm with an error of at most 0.2 cm . What is the maximum calculated area of the circle?
2. The length and width of a rectangle are measured as 30 cm and 24 cm , with an error of at most 0.1 cm each. What is the maximum error in the calculated area of the rectangle?

Three Variables

If $w=f(x, y, z)$:

- The linear approximation of f at (a, b, c) is

$$
\begin{aligned}
L(x, y, z)=f(a, b, c) & \\
& +f_{x}(a, b, c)(x-a)+f_{y}(a, b, c)(y-a)+f_{z}(a, b, c)(z-c)
\end{aligned}
$$

- The increment of w is

$$
\Delta w=f(x+\Delta x, y+\Delta y, z+\Delta z)-f(x, y, z)
$$

- The differential dw is

$$
d w=\frac{\partial w}{\partial x} d x+\frac{\partial w}{\partial y} d y+\frac{\partial w}{\partial z} d z
$$

Three Variables

The linear approximation of f at (a, b, c) is

$$
\begin{array}{ll}
L(x, y, z)=f(a, b, c) & \\
\quad+f_{x}(a, b, c)(x-a)+f_{y}(a, b, c)(y-a)+f_{z}(a, b, c)(z-c)
\end{array}
$$

Find the linear approximation to

$$
f(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}
$$

at $(x, y, z)=(3,2,6)$ and estimate

$$
\sqrt{(3.02)^{2}+(1.97)^{2}+(5.99)^{2}}
$$

Summary

- We showed how the partial derivatives $f_{x}(a, b)$ and $f_{y}(a, b)$ determine the tangent plane to the graph of f at $(a, b, f(a, b))$
- We saw how the tangent plane defines a linear approximation $L(x, y)$ to $f(x, y)$ near $(x, y)=(a, b)$
- We saw how these ideas generalize to functions of three variables

