Lecture 14: Addendum

Peter Perry

September 27, 2019

These notes complete the example I didn't finish in class. Remember that we stated the following theorem

Theorem If $f_{x}(x, y)$ and $f_{y}(x, y)$ exist and are continuous at (a, b), then f is differentiable at (a, b).

Recall that f is differentiable at (a, b) if

$$
f(a+\Delta x, b+\Delta y)=f(a, b)+f_{x}(a, b) \Delta x+f_{y}(a, b) \Delta y+\varepsilon \Delta x+\varepsilon \Delta y
$$

where $\varepsilon \rightarrow 0$ as $(x, y) \rightarrow(a, b)$.
We want to provide an example of a function for which $f_{x}(a, b)$ and $f_{y}(a, b)$ both exist, but the derivatives $f_{x}(x, y)$ and $f_{y}(x, y)$ are not continuous at (a, b), and f is not differentiable at (a, b). The example is:

$$
f(x, y)=\left\{\begin{array}{ll}
\frac{x y}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \\
0 & (x, y)=(0,0)
\end{array} \quad(a, b)=(0,0)\right.
$$

The graph of this function looks very strange at $(0,0)$ (see the lecture slide for the graph). We can understand this "strangeness" a bit more by considering how $f(x, y)$ behaves as $(x, y) \rightarrow(0,0)$ along the line $y=m x$. We get

$$
f(x, m x)=\frac{m x^{2}}{x^{2}+m^{2} x^{2}}=\frac{m}{1+m^{2}}
$$

so that f is actually constant along the line, but the constant value is different depending on m, the slope of the line. The level curves $f(x, y)=k$ look like this:

Clearly, something very weird is going on at $(0,0)$!
For $(x, y) \neq(0,0)$ we can compute the partials of $f(x, y)$ using the quotient rule. We get

$$
f_{x}(x, y)=\frac{y\left(y^{2}-x^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}, \quad f_{y}(x, y)=\frac{x\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}
$$

The behavior of these derivatives as $(x, y) \rightarrow(0,0)$ is even spookier than the behavior of $f(x, y)$. If we try the same trick of following the derivative to zero by along lines we get

$$
f_{x}(x, m x)=\frac{m\left(m^{2}-1\right)}{x\left(1+m^{2}\right)^{2}}, \quad f_{y}(x, m x)=\frac{\left(1-m^{2}\right)}{x\left(1+m^{2}\right)^{2}}
$$

so that, as $x \rightarrow 0$ along any line, the partial derivatives increase without bound (since $1 / x \rightarrow \pm \infty$ as $x \rightarrow 0$)!

More strangely yet, we can use the definition of derivative to show that $f_{x}(0,0)=0$ and $f_{y}(0,0)=0$. First, note that $f(h, 0)=f(0, h)=0$. Next, compute

$$
f_{x}(0,0)=\lim _{h \rightarrow 0} \frac{f(h, 0)-f(0,0)}{h}=0
$$

and

$$
f_{y}(0,0)=\lim _{h \rightarrow 0} \frac{f(0, h)-f(0,0)}{h}=0
$$

The moral of this story is that even rational functions of two variables can be non-differentiable (and not even continuous) at certain points!

