Math 213 - The Chain Rule and Implicit Differentiation

Peter A. Perry
University of Kentucky

September 30, 2019

Reminders

- Homework B3 on 14.4 is due Wednesday night
- Quiz \# 4 on 14.1, 14.3 takes place on Thursday
- Homework B4 on 14.5 is due Friday night

Unit II: Functions of Several Variables

13.3-4 Lecture 11: Velocity and Acceleration
14.1 Lecture 12: Functions of Several Variables
14.3 Lecture 13: Partial Derivatives
14.4 Lecture 14: Linear Approximation
14.5 Lecture 15: Chain Rule, Implicit Differentiation
14.6 Lecture 16: Directional Derivatives and the Gradient
14.7 Lecture 17: Maximum and Minimum Values, I
14.7 Lecture 18: Maximum and Minimum Values, II
14.8 Lecture 19: Lagrange Multipliers
15.1 Double Integrals
15.2 Double Integrals over General Regions Exam II Review

Learning Goals

- Review the chain rule for functions of one variable
- Learn how to differentiate $f(x, y)$ along a curve $(x(t), y(t))$
- Learn how to differentiate $f(x, y)$ along $x(s, t), y(s, t)$
- Learn about the Chain Rule Tree
- Learn about Implicit Differentiation

Chain Rule for Functions of One Variable

The Chain Rule, 1 Variable If $y=f(u)$ and $u=u(x)$, then

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}
$$

Remember that, at the end of the computation, you substitute for u the formula for u in terms of x !
(1) If $y=u^{3}$ and $u=\cos x$, find $d y / d x$
(2) Find the derivative of $g(x)=\left(x^{2}+1\right)^{3 / 2}$

Case 1: $f(x(t), y(t))$

The Chain Rule, 2 Variables (Case 1) If $z=f(x, y), x=g(t)$, and $y=h(t)$, then

$$
\frac{d z}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}
$$

(1) Suppose that $z=\sin x \cos y, x=\sqrt{t}$, and $y=1 / t$. Find $d z / d t$.
(2) Suppose that $z=\sqrt{1+x y}, x=\tan t$, and $y=\arctan t$. Find $d z / d t$.

Case 1: $f(x(t), y(t))$

The Chain Rule, 2 Variables (Case 1) If $z=f(x, y), x=g(t)$, and $y=h(t)$, then

$$
\frac{d z}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}
$$

The differential of z is

$$
d z=\frac{\partial f}{\partial x} d x+\frac{\partial z}{\partial y} d y
$$

If $x=x(t)$ and $y=y(t)$ then

$$
d x=\frac{d x}{d t} d t, \quad d y=\frac{d y}{d t} d t
$$

Hence

$$
\frac{d z}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t}
$$

Case 2: $f(x(s, t), y(s, t))$

The Chain Rule, 2 Variables (Case 2) If

$$
z=f(x, y), x=g(s, t), y=h(s, t)
$$

then

$$
\frac{\partial z}{\partial s}=\frac{\partial z}{\partial s}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial s}, \quad \frac{\partial z}{\partial t}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial t},
$$

(1) Find $\partial z / \partial s$ and $\partial z / \partial t$ if $z=\tan ^{-1}\left(x^{2}+y^{2}\right), x=s \ln t, y=t e^{t}$.
(2) Find $\partial z / \partial s$ and $\partial z / \partial t$ if $z=\sqrt{x} e^{x y}, x=1+s t, y=s^{2}-t^{2}$

The Chain Rule Tree

You can visualize the chain rule by a tree diagram: If

$$
z=f(x, y)
$$

and

$$
x=g(s, t), \quad y=h(s, t),
$$

then:

- You can find $\partial z / \partial s$ by adding contributions for all paths from z to s
- You can find $\partial z / \partial t$ by adding contributinos for all paths from z to t

The Chain Rule Tree

Use the following diagram to find formulas for $\partial w / \partial s$ and $\partial w / \partial t$ if w is a function of x, y, and z, and x, y, z are each functions of s and t

More Fun with the Chain Rule

(1) Find $\partial z / \partial t$ if $w=\ln \sqrt{x^{2}+y^{2}+z^{2}}, x=\sin t, y=\cos t$, and $z=\tan t$
(2) Find $\partial w / \partial r$ if $w=x y+y z+x z, x=r \cos \theta, y=r \sin \theta, z=r \theta$.
(3) Suppose $g(u, v)=f\left(e^{u}+\sin v, e^{u}+\cos v\right)$. Use the following table to find $g_{u}(0,0)$ and $g_{v}(0,0)$.

	f	g	f_{x}	f_{y}
$(0,0)$	3	6	4	8
$(1,2)$	6	3	2	5

Implicit Differentiation

If y is defined implicitly as a function of x by the equation $F(x, y)=0$, we can use the differential

$$
d F=\frac{\partial F}{\partial x} d x+\frac{\partial F}{\partial y} d y
$$

to find $d y / d x$.
If $F(x, y)$ is constant, then

$$
d F=0=\frac{\partial F}{\partial x} d x+\frac{\partial F}{\partial y} d y
$$

and we can solve for $d y / d x$
We can use a similar technique for z defined implicitly as a function of x, y by an equation of the form $G(x, y, z)=0$.
(1) Find $d y / d x$ if $\cos (x y)=1+\sin y$
(2) Find $\partial z / \partial x$ and $\partial z / \partial y$ if $x^{2}-y^{2}+z^{2}-2 z=4$
(3) Find $\partial z / \partial x$ and $\partial z / \partial y$ if $e^{z}=x y z$

Summary

- We reviewed the chain rule for functions of one variable
- We studied several cases of the chain rule for functions of several variables, beginning with $z=f(x, y), x=g(t), y=h(t)$
- We learned how to use the "chain rule tree" to apply the chain rule
- We learned how to compute partial derivatives of implicitly defined functions

