Math 213 - Directional Derivatives and the Gradient

Peter A. Perry
University of Kentucky

October 2, 2019

Reminders

- Homework B3 is due tonight!
- You have Quiz \#4 on 14.1 and 14.3 in recitation tomorrow
- Homework B4 is due on Friday

Unit II: Functions of Several Variables

13.3-4 Lecture 11: Velocity and Acceleration
14.1 Lecture 12: Functions of Several Variables
14.3 Lecture 13: Partial Derivatives
14.4 Lecture 14: Linear Approximation
14.5 Lecture 15: Chain Rule, Implicit Differentiation
14.6 Lecture 16: Directional Derivatives and the Gradient
14.7 Lecture 17: Maximum and Minimum Values, I
14.7 Lecture 18: Maximum and Minimum Values, II
14.8 Lecture 19: Lagrange Multipliers
15.1 Double Integrals
15.2 Double Integrals over General Regions

Exam II Review

Learning Goals

- Understand what a directional derivative of a function of two and three variables is, and how to compute it
- Understand what the gradient vector ∇f is, and how it's related to directional derivatives
- Understand that the gradient vector:
- Points in the direction of maximum change of f
- Has magnitude equal to that maximal rate of change
- Is perpendicular to level curves (two variables) or level surfaces (three variables)

Review

The Chain Rule, 2 Variables (Case 1) If

$$
z=f(x, y), x=g(t), y=h(t)
$$

then

$$
\frac{d z}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}
$$

Suppose that

$$
\begin{gathered}
f_{x}(1,3)=-2, \quad f_{y}(1,3)=4 \\
x(t)=t, \quad y(t)=3 t .
\end{gathered}
$$

What is the derivative of $f(x(t), y(t))$ at $t=1$?

Review

The Chain Rule, 2 Variables (Case 1) If

$$
z=f(x, y), x=g(t), y=h(t)
$$

then

$$
\frac{d z}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}
$$

If $x(t)=x_{0}+a t, y(t)=y_{0}+b t$, what is $(d / d t) f(x(t), y(t))$ at $t=0$?

Review

Suppose $f(x, y)$ is a function of two variables, and $\left(x_{0}, y_{0}\right)$ is a point in its domain. The partial derivatives of f with respect to x and y are given by:

$$
f_{x}\left(x_{0}, y_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h, y_{0}\right)-f\left(x_{0}, y_{0}\right)}{h}
$$

(change in direction of $\langle 1,0\rangle$)

Review

Suppose $f(x, y)$ is a function of two variables, and $\left(x_{0}, y_{0}\right)$ is a point in its domain. The partial derivatives of f with respect to x and y are given by:

$$
f_{x}\left(x_{0}, y_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h, y_{0}\right)-f\left(x_{0}, y_{0}\right)}{h}
$$

(change in direction of $\langle 1,0\rangle$)
$f_{y}\left(x_{0}, y_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}, y_{0}+h\right)-f\left(x_{0}, y_{0}\right)}{h}$
(change in direction of $\langle 0,1\rangle$)

The Directional Derivative

Suppose $f(x, y)$ is a function of two variables, $\left(x_{0}, y_{0}\right)$ is a point in its domain, and $\mathbf{u}=\langle a, b\rangle$ is a unit vector.

The directional derivative of f in the direction $u=\langle a, b\rangle$ at $\left(x_{0}, y_{0}\right)$ is

$$
\begin{aligned}
& D_{\mathbf{u}} f\left(x_{0}, y_{0}\right)= \\
& \quad \lim _{h \rightarrow 0} \frac{f\left(x_{0}+a h, y_{0}+b h\right)-f\left(x_{0}, y_{0}\right)}{h}
\end{aligned}
$$

Computing the Directional Derivative

Remember that

$$
D_{\mathbf{u}} f\left(x_{0}, y_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+a h, y_{0}+b h\right)-f\left(x_{0}, y_{0}\right)}{h}
$$

If $\mathbf{u}=\langle a, b\rangle$, this is the same as the derivative of $f\left(x_{0}+a t, y_{0}+b t\right)$ at $t=0$.
We can compute this by the chain rule and get

$$
D_{\mathbf{u}} f\left(x_{0}, y_{0}\right)=a f_{x}\left(x_{0}, y_{0}\right)+b f_{y}\left(x_{0}, y_{0}\right)
$$

(1) Find the directional derivative of $f(x, y)=x y^{3}-x^{2}$ at $(1,2)$ in the direction $\mathbf{u}=\langle 1 / 2, \sqrt{3} / 2\rangle$
(2) Find the directional derivative of $f(x, y)=x^{2} \ln y$ at $(3,1)$ in the direction of $\mathbf{u}=(-5 / 13) \mathbf{i}+(12 / 13) \mathbf{j}$

The Gradient Vector

We can look at the formula

$$
D_{\mathbf{u}} f\left(x_{0}, y_{0}\right)=a f_{x}\left(x_{0}, y_{0}\right)+b f_{y}\left(x_{0}, y_{0}\right)
$$

in a new way by introducing the gradient of f at $\left(x_{0}, y_{0}\right)$: if

$$
(\nabla f)\left(x_{0}, y_{0}\right)=f_{x}\left(x_{0}, y_{0}\right) \mathbf{i}+f_{y}\left(x_{0}, y_{0}\right) \mathbf{j}
$$

then

$$
D_{\mathbf{u}} f\left(x_{0}, y_{0}\right)=\nabla f \cdot \mathbf{u}
$$

(1) Find the gradient vector for $f(x, y)=x / y$ at $(2,1)$
(2) Find the directional derivative of f at $(2,1)$ in the direction $\mathbf{u}=\frac{3}{5} \mathbf{i}+\frac{4}{5} \mathbf{j}$

Maximum Rate of Change

Remember that

$$
\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos (\theta)
$$

where θ is the angle between \mathbf{a} and \mathbf{b}.
The dot product has its maximum value when the vector a points in the same direction as \mathbf{b}.

So, the directional derivative $D_{\mathbf{u}} f\left(x_{0}, y_{0}\right)$ has its maximum when \mathbf{u} points in the same direction as $\nabla f\left(x_{0}, y_{0}\right)$. In this direction, $D_{\mathbf{u}} f\left(x_{0}, y_{0}\right)=\left|\nabla f\left(x_{0}, y_{0}\right)\right|$
(1) Find the maximum rate of change of $f(x, y)=x e^{x y}$ at $(0,2)$ and find the direction where it occurs.

Sneak Preview: The Gradient Vector Field

If $f(x, y)$ is a function two variables, the gradient vector field

$$
\nabla f(x, y)=\frac{\partial f}{\partial x}(x, y) \mathbf{i}+\frac{\partial f}{\partial y}(x, y) \mathbf{j}
$$

moves in the direction of greatest change of f

The Gradient and Level Curves

The dot product of two vectors \mathbf{a} and \mathbf{b} is zero when \mathbf{a} and \mathbf{b} are perpendicular.

The directional derivative $D_{\mathbf{u}} f$ must be zero when \mathbf{u} points along a level curve.

So, the gradient of a function f must be perpendicular to the level curves of f

Summary

- The gradient of a function $f(x, y)$ at $(x, y)=\left(x_{0}, y_{0}\right)$ is the vector

$$
\nabla f\left(x_{0}, y_{0}\right)=f_{x}\left(x_{0}, y_{0}\right) \mathbf{i}+f_{y}\left(x_{0}, y_{0}\right) \mathbf{j}
$$

- If $\mathbf{u}=a \mathbf{i}+b \mathbf{j}$ is a unit vector, then the directional derivative of f at $\left(x_{0}, y_{0}\right)$ in the direction \mathbf{u} is

$$
D_{\mathbf{u}} f\left(x_{0}, y_{0}\right)=\nabla f\left(x_{0}, y_{0}\right) \cdot \mathbf{u}
$$

- The gradient $\nabla f\left(x_{0}, y_{0}\right)$ points in the direction of greatest change of f at $\left(x_{0}, y_{0}\right)$. The magnitude of the gradient is equal to the greatest change.
- The gradient $\nabla f\left(x_{0}, y_{0}\right)$ is perpendicular to the level curve of f passing through $\left(x_{0}, y_{0}\right)$

Directional Derivatives of $f(x, y, z)$

The directional derivative of $f(x, y, z)$ at $\left(x_{0}, y_{0}, z_{0}\right)$ in the direction $\mathbf{u}=\langle a, b, c\rangle$ is given by

$$
D_{\mathbf{u}} f\left(x_{0}, y_{0}, z_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+a h, y_{0}+b h, z_{0}+c h\right)-f\left(x_{0}, y_{0}, z_{0}\right)}{h}
$$

To compute it, we introduce the gradient vector

$$
\nabla f\left(x_{0}, y_{0}, z_{0}\right)=f_{x}\left(x_{0}, y_{0}, z_{0}\right) \mathbf{i}+f_{y}\left(x_{0}, y_{0}, z_{0}\right) \mathbf{j}+f_{z}\left(x_{0}, y_{0}, z_{0}\right) \mathbf{k}
$$

Then, if $\mathbf{u}=\langle a, b, c\rangle$ is a unit vector,

$$
D_{\mathbf{u}} f\left(x_{0}, y_{0}, z_{0}\right)=\nabla f\left(x_{0}, y_{0}, z_{0}\right) \cdot \mathbf{u}
$$

(1) Using the gradient vector, find the directional derivative of $f(x, y, z)=y^{2} e^{x y z}$ at $(0,1,-1)$ in the direction $\mathbf{u}=\frac{3}{13} \mathbf{i}+\frac{4}{13} \mathbf{j}+\frac{12}{13} \mathbf{k}$.
(2) Find the maximum rate of change of $f(x y, z)=x \ln (y z)$ at $(1,2,1 / 2)$ and find the direction in which it occurs.

Tangent Planes to Level Surfaces

The gradient of a function of two variables is perpendicular to level curves of that function.

The gradient of a function of three variables is perpendicular to level surfaces of that function.

This means that $\nabla f\left(x_{0}, y_{0}, z_{0}\right)$ is normal to the tangent plane to f at $\left(x_{0}, y_{0}, z_{0}\right)$
(1) Find the equations of the tangent plane and the normal line to the surface $x=y^{2}+z^{2}+1$ at $(3,1,-1)$.
(2) Are there any points on the hyperboloid $x^{2}-y^{2}+z^{2}=1$ where the tangent plane is parallel to the plane $z=x+y$?

Summary

- We defined directional derivative $D_{\mathbf{u}} f(a, b)$ of a function of two variables - the rate of change of f in the direction \mathbf{u} at (a, b)
- We introduced the gradient vector ∇f and found how to compute the directional derivative using the gradient vector:

$$
D_{\mathbf{u}} f(a, b)=\mathbf{u} \cdot \nabla f(a, b)
$$

- We learned the following properties of ∇f :
- $\nabla f(a, b)$ points in the direction of greatest increase of f at (a, b)
- $|\nabla f(a, b)|$ is the maximum rate of change of f at (a, b)
- ∇f is perpendicular to the level curves of f (two variable) or level surfaces of f (three variables)

