Math 213 - Labelling Space

Peter A. Perry
University of Kentucky
August 26, 2019

Welcome to Math 213, Fall 2019 !

- Bookmark the course web page http://www.math.uky.edu/~ma213/213-f19
- Bookmark the instructor webpage http://www.math.uky.edu/~perry/213-f19-perry
- Familiarize yourself with the Canvas Page for this course
- Print out a copy of the Course Calendar and keep in your notebook (or store the PDF file on your favorite laptop or mobile device)

Reminders

- Access your WebWork account only through Canvas!
- Homework A1 on Sections 12.1-12.2 is due Friday August 30
- Applications for an alternate Exam 1 are due no later than September 4

Review your schedule and apply for all alternate exams at once by using the Google Form linked from Canvas or the course home page.

Unit I: Geometry and Motion in Space

12.1 Lecture 1: Three-Dimensional Coordinate Systems
12.2 Lecture 2: Vectors in the Plane and in Space
12.3 Lecture 3: The Dot Product
12.4 Lecture 4: The Cross Product
12.5 Lecture 5: Equations of Lines and Planes, I
12.5 Lecture 6: Equations of Lines and Planes, II
12.6 Lecture 7: Surfaces in Space
13.1 Lecture 8: Vector Functions and Space Curves
13.2 Lecture 9 Derivatives and Integrals of Vector Functions Lecture 10: Exam I Review

Learning Goals

- Review basics of Calculus I-II
- Preview Calculus III
- Introduce 3D coordinate systems
- Introduce the distance formula in 3D
- Find equations of spheres

What Happened in Calculus I-II?

The derivative of a function

$$
f^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

computes:

- The slope of the tangent line to the graph of $y=f(x)$ at $x=x_{0}$
- The instantaneous rate of change of a function f at $x=x_{0}$

Using the derivative, you can find: intervals of increase and decrease, local extrema, and global extrema. It will be important to remember the differential of f,

$$
d f(x)=f^{\prime}(x) d x
$$

What Happened in Calculus I-II?

The integral of a function f :

$$
\int_{a}^{b} f(x) d x
$$

computes:

- The net area under the graph of $y=f(x)$ between a and b
- The net change in a quantity F with rate of change $f(x)=F^{\prime}(x)$ between $x=a$ and $x=b$

The integral is a limit of Riemann sums. Any geometric quantity (area, arc length, volume) or physical quantity (displacement given velocity, velocity given acceleration) that can be computed as a limit of Riemann sums can be computed as an integral

The Fundamental Theorem of Calculus

Fundamental Theorem, Part I If f is continuous on $[a, b]$ and F is any antiderivative of f, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

Fundamental Theorem, Part II If f is a continuous function on $[a, b]$ then

$$
\frac{d}{d x}\left(\int_{a}^{x} f(t) d t\right)=f(x)
$$

In other words,

$$
\int d f=d\left(\int f\right)=f
$$

What will happen in Calculus III?

In Calculus III we'll take these concepts of Calculus into higher dimensions

- We'll consider vector functions $\mathbf{v}(t)=(x(t), y(t))$ and $\mathbf{w}(t)=(x(t), y(t), z(t))$ which describe motion in the plane and in space
- We'll consider functions of several variables $f(x, y)$ and $g(x, y, z)$ which describe altitude, temperature distributions, densities, etc.
- We'll learn about transformations $(x(u, v), y(u, v))$ that generalize polar coordinates and describe regions
- We'll study parameterized surfaces $(x(u, v), y(u, v), z(u, v))$
- We'll consider vector fields which describe the velocity of a fluid, the force of gravity, the action of electric and magnetic fields, and more!

What Will Happen Today?

We will move into three-dimensional space

This choice of x-, y-, z-axes forms a right-handed coordinate system

What Will Happen Today?

We will move into three-dimensional space

To locate a point P with respect to a chosen origin O, we specify the x, y and z displacements from O. For example, the point $P=(1,2,3)$ is obtained by moving:

This choice of x-, y-, z-axes forms a right-handed coordinate system

What Will Happen Today?

We will move into three-dimensional space

To locate a point P with respect to a chosen origin O, we specify the x, y and z displacements from O. For example, the point $P=(1,2,3)$ is obtained by moving:

- 1 unit in the x direction

This choice of x-, y-, z-axes forms a right-handed coordinate system

What Will Happen Today?

We will move into three-dimensional space

To locate a point P with respect to a chosen origin O, we specify the x, y and z displacements from O. For example, the point $P=(1,2,3)$ is obtained by moving:

- 1 unit in the x direction
- 2 units in the y direction

This choice of x-, y-, z-axes forms a right-handed coordinate system

What Will Happen Today?

We will move into three-dimensional space

To locate a point P with respect to a chosen origin O, we specify the x, y and z displacements from O. For example, the point $P=(1,2,3)$ is obtained by moving:

- 1 unit in the x direction
- 2 units in the y direction
- 3 units in the z direction

This choice of x-, y-, z-axes forms a right-handed coordinate system

The point

$$
P=(2,1,-1)
$$

is obtained by moving:

The point

$$
P=(2,1,-1)
$$

is obtained by moving:

- 2 units in the x direction

The point

$$
P=(2,1,-1)
$$

is obtained by moving:

- 2 units in the x direction
- 1 unit in the y direction

The point

$$
P=(2,1,-1)
$$

is obtained by moving:

- 2 units in the x direction
- 1 unit in the y direction
- -1 units in the z direction

The Distance Formula in \mathbb{R}^{2}

Recall the distance between two points in the $x y$ plane:

The Distance Formula in \mathbb{R}^{2}

Recall the distance between two points in the $x y$ plane:

Add an "extra" point Q below P_{2}

The Distance Formula in \mathbb{R}^{2}

Recall the distance between two points in the $x y$ plane:

Add an "extra" point Q below P_{2}
By the Pythagorean Theorem,

$$
\left|P_{1} P_{2}\right|^{2}=\left|P_{1} Q_{1}\right|^{2}+\left|Q P_{2}\right|^{2}
$$

so

$$
\begin{aligned}
\left|P_{1} P_{2}\right| & =\sqrt{\left|P_{1} Q_{1}\right|^{2}+\left|Q P_{2}\right|^{2}} \\
& =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
\end{aligned}
$$

The Distance Formula in \mathbb{R}^{3}

The Distance Formula in \mathbb{R}^{3}

The Distance Formula in \mathbb{R}^{3}

Add an "extra" point Q

- By the Pythagorean Theorem,

$$
\left|P_{1} P_{2}\right|^{2}=\left|P_{1} Q\right|^{2}+\left|Q P_{2}\right|^{2}
$$

The Distance Formula in \mathbb{R}^{3}

Add an "extra" point Q

- By the Pythagorean Theorem,

$$
\left|P_{1} P_{2}\right|^{2}=\left|P_{1} Q\right|^{2}+\left|Q P_{2}\right|^{2}
$$

- By the two-dimensional distance formula

$$
\left|P_{1} Q\right|^{2}=\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}
$$

while

$$
\left|Q P_{2}\right|^{2}=\left(z_{2}-z_{1}\right)^{2}
$$

The Distance Formula in \mathbb{R}^{3}

Add an "extra" point Q

- By the Pythagorean Theorem,

$$
\left|P_{1} P_{2}\right|^{2}=\left|P_{1} Q\right|^{2}+\left|Q P_{2}\right|^{2}
$$

- By the two-dimensional distance formula

$$
\left|P_{1} Q\right|^{2}=\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}
$$

while

$$
\left|Q P_{2}\right|^{2}=\left(z_{2}-z_{1}\right)^{2}
$$

$$
\left|P_{1} P_{2}\right|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}
$$

Two and Three Dimensions

Find the set of all points (x, y) that satisfy the equation $x=2$

Two and Three Dimensions

Find the set of all points (x, y) that satisfy the equation $x=2$

Answer: A vertical line through $x=2$

Two and Three Dimensions

Find the set of all points (x, y) that satisfy the equation $x=2$

Answer: A vertical line through $x=2$

Find the set of all points (x, y, z) that obey the equation $y=2$

Two and Three Dimensions

Find the set of all points (x, y) that satisfy the equation $x=2$

Answer: A vertical line through $x=2$

Find the set of all points (x, y, z) that obey the equation $y=2$

Answer: A vertical plane through $y=2$

Two and Three Dimensions

$$
\begin{aligned}
& \text { Find the set of all points }(x, y) \text { that satisfy the } \\
& \text { equation } \\
& \qquad x^{2}+y^{2}=1
\end{aligned}
$$

Two and Three Dimensions

$$
\begin{aligned}
& \text { Find the set of all points }(x, y) \text { that satisfy the } \\
& \text { equation } \\
& \qquad x^{2}+y^{2}=1
\end{aligned}
$$

Answer: A circle of radius 1 centered at $(0,0)$

Two and Three Dimensions

Find the set of all points (x, y) that satisfy the equation

$$
x^{2}+y^{2}=1
$$

Answer: A circle of radius 1 centered at $(0,0)$

Find the set of all points (x, y, z) that satisfy the equation

$$
x^{2}+y^{2}=1
$$

Two and Three Dimensions

Find the set of all points (x, y) that satisfy the equation

$$
x^{2}+y^{2}=1
$$

Answer: A circle of radius 1 centered at $(0,0)$

Find the set of all points (x, y, z) that satisfy the equation

$$
x^{2}+y^{2}=1
$$

Answer: A cylinder of radius 1 centered at $(0,0,0)$ whose axis of symmetry is the z-axis

Two and Three Dimensions

Find the set of all points (x, y) that satisfy the equation

$$
x^{2}+y^{2}=1
$$

Two and Three Dimensions

Find the set of all points (x, y) that satisfy the equation

$$
x^{2}+y^{2}=1
$$

Answer: A circle of radius 1 centered at $(0,0)$

Two and Three Dimensions

Find the set of all points (x, y) that satisfy the equation

$$
x^{2}+y^{2}=1
$$

Answer: A circle of radius 1 centered at $(0,0)$

Find the set of all points (x, y, z) that satisfy the equation

$$
x^{2}+y^{2}+z^{2}=1
$$

Two and Three Dimensions

Find the set of all points (x, y) that satisfy the equation

$$
x^{2}+y^{2}=1
$$

Answer: A circle of radius 1 centered at $(0,0)$

Find the set of all points (x, y, z) that satisfy the equation

$$
x^{2}+y^{2}+z^{2}=1
$$

Answer: A sphere of radius 1 centered at (0,0,0).

Two and Three Dimensions

Find the set of points (x, y) that satisfy the inequality

$$
1<x^{2}+y^{2}<4
$$

Two and Three Dimensions

Find the set of points (x, y) that satisfy the inequality

$$
1<x^{2}+y^{2}<4
$$

Answer: The annulus centered at $(0,0)$ and bounded by circles of radii 1 and 2

Two and Three Dimensions

Find the set of points (x, y) that satisfy the inequality

$$
1<x^{2}+y^{2}<4
$$

Answer: The annulus centered at $(0,0)$ and bounded by circles of radii 1 and 2

Find the set of all points (x, y, z) that satisfy the inequality

$$
1<x^{2}+y^{2}+z^{2}<4
$$

Two and Three Dimensions

Find the set of points (x, y) that satisfy the inequality

$$
1<x^{2}+y^{2}<4
$$

Answer: The annulus centered at $(0,0)$ and bounded by circles of radii 1 and 2

Find the set of all points (x, y, z) that satisfy the inequality

$$
1<x^{2}+y^{2}+z^{2}<4
$$

Answer: The spherical shell centered at $(0,0)$ with inner radius 1 and outer radius 2

The Two Most Important Formulas in this Lecture

Distance Formula in Three Dimensions The distance $\left|P_{1} P_{2}\right|$ between
$P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}, z_{2}\right)$ is

$$
\left|P_{1} P_{2}\right|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}
$$

Equation of a Sphere The equation of a sphere with center (h, k, ℓ) and radius r is

$$
(x-h)^{2}+(y-k)^{2}+(z-\ell)^{2}=r^{2}
$$

Some Examples

Find the equation of a sphere with center at $(-9,4,8)$ and radius 3 .

Some Examples

Find the equation of a sphere with center at $(-9,4,8)$ and radius 3 .
Answer: Using the distance formula on $P_{1}(-9,4,8)$ and $P_{2}(x, y, z)$ we see that

$$
(x+9)^{2}+(y-4)^{2}+(z-8)^{2}=3^{2}
$$

Some Examples, Part II

Find the equation of a sphere if one of its diameters has endpoints $P_{1}(9,1,-8)$ and $P_{2}(11,5,-2)$.

Here we'll need to use the given information to find the radius and the center.

Some Examples, Part II

Find the equation of a sphere if one of its diameters has endpoints $P_{1}(9,1,-8)$ and $P_{2}(11,5,-2)$.

Here we'll need to use the given information to find the radius and the center.
Find the radius by finding the distance between the endpoints of the diameter:

Some Examples, Part II

Find the equation of a sphere if one of its diameters has endpoints $P_{1}(9,1,-8)$ and $P_{2}(11,5,-2)$.

Here we'll need to use the given information to find the radius and the center.
Find the radius by finding the distance between the endpoints of the diameter:

$$
\left|P_{1} P_{2}\right|=\sqrt{(11-9)^{2}+(5-1)^{2}+(-2-(-8))^{2}}=\sqrt{56}
$$

so $r^{2}=d^{2} / 4=14$ (why?)

Some Examples, Part II

Find the equation of a sphere if one of its diameters has endpoints $P_{1}(9,1,-8)$ and $P_{2}(11,5,-2)$.

Here we'll need to use the given information to find the radius and the center.
Find the radius by finding the distance between the endpoints of the diameter:

$$
\left|P_{1} P_{2}\right|=\sqrt{(11-9)^{2}+(5-1)^{2}+(-2-(-8))^{2}}=\sqrt{56}
$$

so $r^{2}=d^{2} / 4=14$ (why?)
Find the center $P(h, k, \ell)$ by finding the midpoint between P_{1} and P_{2} :

Some Examples, Part II

Find the equation of a sphere if one of its diameters has endpoints $P_{1}(9,1,-8)$ and $P_{2}(11,5,-2)$.

Here we'll need to use the given information to find the radius and the center.
Find the radius by finding the distance between the endpoints of the diameter:

$$
\left|P_{1} P_{2}\right|=\sqrt{(11-9)^{2}+(5-1)^{2}+(-2-(-8))^{2}}=\sqrt{56}
$$

so $r^{2}=d^{2} / 4=14$ (why?)
Find the center $P(h, k, \ell)$ by finding the midpoint between P_{1} and P_{2} :

$$
(h, k, \ell)=\left(\frac{9+11}{2}, \frac{1+5}{2}, \frac{-8-2}{2}\right)=(10,3,-5)
$$

You should now be able to find the equation of the sphere.

Lecture Review

- We introduced 'right-handed' coordinate systems in three-dimensional ($x y z$) space
- We derived the distance formula for the distance between two points in three-dimensional space

$$
\left|P_{1} P_{2}\right|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}
$$

- We worked out and graphed equations for planes, cylinders, and spheres in three-dimensional space
- I reminded you to access WebWork only through Canvas!

Homework

Be sure to prepare for recitation tomorrow:

- Study section 12.1, pp. 792-796
- Download recitation worksheet and review Worksheet 1 on section 12.1
- Create your Webwork account by logging in through Canvas
- Begin Webwork Assignment A1 - Remember to access WebWork only through Canvas!

For Wednesday, read and study section 12.2, pp. 798-804.

