Math 213 - Double Integrals over General Regions

Peter A. Perry
University of Kentucky

October 14, 2019

Reminders

- Homework B7 on 14.8 (Lagrange multipliers) is due tonight!
- There is a drop-in review session for Exam II on Monday, October 14, 6:00-8:00 PM in KAS 213
- Exam II takes place on Wednesday, October 16, 5:00-7:00 PM

Unit II: Functions of Several Variables

13.3-4 Lecture 11: Velocity and Acceleration
14.1 Lecture 12: Functions of Several Variables
14.3 Lecture 13: Partial Derivatives
14.4 Lecture 14: Linear Approximation
14.5 Lecture 15: Chain Rule, Implicit Differentiation
14.6 Lecture 16: Directional Derivatives and the Gradient
14.7 Lecture 17: Maximum and Minimum Values, I
14.7 Lecture 18: Maximum and Minimum Values, II
14.8 Lecture 19: Lagrange Multipliers
15.1 Double Integrals
15.2 Double Integrals over General Regions

Exam II Review

Learning Goals

- Learn how to set up iterated integrals for double integrals over plane regions of Type I and Type II
- Learn properties of double integrals

Integrals Over General Regions

We'll see how to compute $\iint_{R} f(x, y) d A$ if R is one of the following kinds of regions:

Type I: R lies between the graphs of two continuous functions of x

$$
D=\left\{(x, y): a \leq x \leq b, g_{1}(x) \leq y \leq g_{2}(x)\right\}
$$

Type II: R lies between the graphs of two continuous functions of y

$$
D=\left\{(x, y): c \leq y \leq d, h_{1}(y) \leq x \leq h_{2}(y)\right\}
$$

Double Integrals Over Type I Regions

$$
\begin{aligned}
& \text { To compute } \iint_{D} f(x, y) d A \text { if } \\
& \qquad D=\left\{(x, y): a \leq x \leq b, g_{1}(x) \leq y \leq g_{2}(x)\right\}
\end{aligned}
$$

$$
\iint_{D} f(x, y) d A=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x
$$

Example: Find $\iint_{D} \frac{y}{x^{2}+1} d A$ if

$$
D=\{(x, y): 0 \leq x \leq 4,0 \leq y \leq \sqrt{x}\}
$$

Double Integrals Over Type I Regions

To compute $\iint_{D} f(x, y) d A$ if

$$
D=\left\{(x, y): a \leq x \leq b, g_{1}(x) \leq y \leq g_{2}(x)\right\}
$$

$$
\iint_{D} f(x, y) d A=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x
$$

Example: Find $\iint_{R} x \cos y d A$ if D is the region bounded by $y=0, y=x^{2}$, and $x=1$

Double Integrals Over Type II Regions

To compute $\iint_{D} f(x, y) d A$ if

$$
D=\left\{(x, y): c \leq y \leq d, h_{1}(y) \leq x \leq h_{2}(y)\right\}
$$

$$
\iint_{D} f(x, y) d A=\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x d y
$$

Example: Find $\iint_{D} e^{-y^{2}} d A$ if

$$
D=\{(x, y): 0 \leq y \leq 3,0 \leq x \leq y\}
$$

Double Integrals over Type II Regions

To compute $\iint_{D} f(x, y) d A$ if

$$
D=\left\{(x, y): c \leq y \leq d, h_{1}(y) \leq x \leq h_{2}(y)\right\}
$$

$$
\iint_{D} f(x, y) d A=\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x d y
$$

Example: Find the volume under the plane $3 x+$ $3 y-z=0$ and above the region enclosed by the parabolas $y=x^{2}$ and $x=y^{2}$

Type I or Type II?

Find the best way to compute each of the following volumes.
(1) The tetrahedron enclosed by the coordinate planes and the plane $2 x+y+z=4$
(2) The volume enclosed by the cylinders $z=x^{2}, y=x^{2}$ and the planes $z=0, y=4$

Properties of Double Integrals, Part I

(1) (linearity) $\iint_{D}[f(x, y)+g(x, y)] d A=\iint_{D} f(x, y) d A+\iint_{D} g(x, y) d A$
(2) (linearity) $\iint_{D} c f(x, y) d A=c \iint f(x, y) d A$
(3) (order) If $f(x, y) \geq g(x, y)$ for all $(x, y) \in D$, then

$$
\iint_{D} f(x, y) d A \geq \iint_{D} g(x, y) d A
$$

(4) $\iint_{D} 1 d A=A(D)$ where $A(D)$ is the area of the domain D

Find the volume of the the solid by subtracting two volumes:
The solid enclosed by the parabolic cylinders $y=1-x^{2}, y=x^{2}-1$ and the planes $x+y+z=2$ and $2 x+2 y-z+10=0$

Properties of Double Integrals, II

(1) (*additivity) If $D=D_{1} \cup D_{2}$, then

$$
\iint_{D} f(x, y) d A=\iint_{D_{1}} f(x, y) d A+\iint_{D_{2}} f(x, y) d A
$$

2 (order) If $m \leq f(x, y) \leq M$ then

$$
m A(D) \leq \iint_{D} f(x, y) d A \leq M A(D)
$$

Express $\iint_{D} x y d A$ as a union of type I and type II integrals if D is as shown

Volumes of Solids - Subtracting Two Volumes

We'll use the GeoGebra package at www.geogebra.org/3d to figure out what's going on here!

Find the volume of the solid enclosed by the parabolic cylinder

$$
y=x^{2}
$$

and the planes

$$
z=3 y
$$

and

$$
z=2+y
$$

Hint: It helps to consider the surface as two graphs $x= \pm \sqrt{y}$ over the $y z$ plane!

