Math 213 - Triple Integrals in Spherical Coordinates

Peter A. Perry

University of Kentucky

October 30, 2019

Reminders

- Homework C3 on section 15.7 (triple integrals in cyindrical coordinates) is due tonight
- Quiz \#7 on sections 15.3 and 15.6 takes place tomorrow in recitation
- Homework C4 on section 15.8 (triple integrals in spherical coordinates) is due Friday

Unit III: Multiple Integrals, Vector Fields

Double Integrals in Polar Coordinates
Triple Integrals (Part I)
Triple Integrals (Part II)
Triple Integrals in Cylindrical Coordinates
Triple Integrals in Spherical Coordinates
Change of Variables, Part I
Change of Variables, Part II
Vector Fields
Line Integrals (Scalar functions)
Line Integrals (Vector functions)
Exam III Review

Goals of the Day

- Know how to locate points and describe regions in spherical coordinates
- Know how to evaluate triple integrals in spherical coordinates

Spherical Coordinates

The spherical coordinates (ρ, θ, ϕ) of a point P in three-dimensional space with projection P^{\prime} on the $x y$-plane are:

Spherical Coordinates

The spherical coordinates (ρ, θ, ϕ) of a point P in three-dimensional space with projection P^{\prime} on the $x y$-plane are:

- $\rho=\sqrt{x^{2}+y^{2}+z^{2}}$, the distance $|\overrightarrow{O P}|$

Spherical Coordinates

The spherical coordinates (ρ, θ, ϕ) of a point P in three-dimensional space with projection P^{\prime} on the $x y$-plane are:

- $\rho=\sqrt{x^{2}+y^{2}+z^{2}}$, the distance $|\overrightarrow{O P}|$
- ϕ, the angle that the vector $\overrightarrow{O P}$ makes with the z-axis

Spherical Coordinates

The spherical coordinates (ρ, θ, ϕ) of a point P in three-dimensional space with projection P^{\prime} on the $x y$-plane are:

- $\rho=\sqrt{x^{2}+y^{2}+z^{2}}$, the distance $|\overrightarrow{O P}|$
- ϕ, the angle that the vector $\overrightarrow{O P}$ makes with the z-axis
- θ, the angle that the vector $\overrightarrow{O P^{\prime}}$ makes with the x-axis

Cartesian to Spherical and Back Again

Going over:

$$
\begin{aligned}
\rho & =\sqrt{x^{2}+y^{2}+z^{2}} \\
\tan \theta & =\frac{y}{x} \\
\cos \phi & =\frac{z}{\rho}
\end{aligned}
$$

Cartesian to Spherical and Back Again

Going over:

$$
\begin{aligned}
\rho & =\sqrt{x^{2}+y^{2}+z^{2}} \\
\tan \theta & =\frac{y}{x} \\
\cos \phi & =\frac{z}{\rho}
\end{aligned}
$$

Coming back:

$$
\begin{aligned}
& x=\rho \sin \phi \cos \theta \\
& y=\rho \sin \phi \sin \theta \\
& z=\rho \cos \phi
\end{aligned}
$$

Cartesian to Spherical and Back Again

Going over:

$$
\begin{aligned}
\rho & =\sqrt{x^{2}+y^{2}+z^{2}} \\
\tan \theta & =\frac{y}{x} \\
\cos \phi & =\frac{z}{\rho}
\end{aligned}
$$

Coming back:

$$
\begin{aligned}
& x=\rho \sin \phi \cos \theta \\
& y=\rho \sin \phi \sin \theta \\
& z=\rho \cos \phi
\end{aligned}
$$

(1) Find the spherical coordinates of the point $(1, \sqrt{3}, 4)$
(2) Find the cartesian coordinates of the point $(4, \pi / 4, \pi / 2)$

Regions in Spherical Coordinates

Match each of the following surfaces with its graph in $x y z$ space
(1) $\theta=c$
(2) $\rho=5$
(3) $\phi=c, \quad 0<c<\pi / 2$

A Spherical Wedge

The region

$$
E=\{(\rho, \theta, \phi): a \leq \rho \leq b, \alpha \leq \theta \leq \beta, c \leq \phi \leq d\}
$$

is a spherical wedge. What does it look like?

- $a \leq \rho \leq b$ means the shape lies between spheres of radius a and b

A Spherical Wedge

The region

$$
E=\{(\rho, \theta, \phi): a \leq \rho \leq b, \alpha \leq \theta \leq \beta, c \leq \phi \leq d\}
$$

is a spherical wedge. What does it look like?

- $a \leq \rho \leq b$ means the shape lies between spheres of radius a and b
- $\alpha \leq \theta \leq \beta$ restricts the shape to a wedge-shaped region over the $x y$ plane

A Spherical Wedge

The region

$$
E=\{(\rho, \theta, \phi): a \leq \rho \leq b, \alpha \leq \theta \leq \beta, c \leq \phi \leq d\}
$$

is a spherical wedge. What does it look like?

- $a \leq \rho \leq b$ means the shape lies between spheres of radius a and b
- $\alpha \leq \theta \leq \beta$ restricts the shape to a wedge-shaped region over the $x y$ plane
- $c \leq \phi \leq d$ restricts the shape to the space between two cones about the z-axis

Describing Regions in Spherical Coordinates

Can you sketch each of these regions?
(1) $0 \leq \rho \leq 1, \quad 0 \leq \phi \leq \pi / 6, \quad 0 \leq \theta \leq \pi$
(2) $1 \leq \rho \leq 2, \quad \pi / 2 \leq \phi \leq \pi$
(3) $2 \leq \rho \leq 4, \quad 0 \leq \phi \leq \pi / 3, \quad 0 \leq \theta \leq \pi$

Triple Integrals in Spherical Coordinates

We need to find the volume of a small spherical wedge
Volume comes from

$$
d V=
$$

Triple Integrals in Spherical Coordinates

We need to find the volume of a small spherical wedge
Volume comes from

- Change in ρ

$$
d V=d \rho
$$

Triple Integrals in Spherical Coordinates

We need to find the volume of a small spherical wedge

Volume comes from

- Change in ρ
- Change in ϕ

$$
d V=\rho d \rho d \phi
$$

Triple Integrals in Spherical Coordinates

We need to find the volume of a small spherical wedge

Volume comes from

- Change in ρ
- Change in ϕ
- Change in θ

$$
d V=\rho^{2} \sin \phi d \rho d \phi d \theta
$$

Triple Integrals in Spherical Coordinates

$$
\begin{aligned}
& \iint_{E} f(x, y, z) d V= \\
& \int_{c}^{d} \int_{\alpha}^{\beta} \int_{a}^{b} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^{2} \sin \phi d \rho d \theta d \phi
\end{aligned}
$$

if E is a spherical wedge

$$
E=\{(\rho, \theta, \phi): a \leq \rho \leq b, \alpha \leq \theta \leq \beta, c \leq \phi \leq d\}
$$

(1) Find $\iiint_{E} y^{2} z^{2} d V$ if E is the region above the cone $\phi=\pi / 3$ and below the sphere $\rho=1$
(2) Find $\iiint_{E} y^{2} d V$ if E is the solid hemisphere $x^{2}+y^{2}+z^{2} \leq 9, y \geq 0$
(3) Find $\iiint_{E} \sqrt{x^{2}+y^{2}+z^{2}} d V$ if E lies above the cone $z=\sqrt{x^{2}+y^{2}}$ and between the spheres $\rho=1$ and $\rho=2$

Halloween Homework

Determine the volume of pumpkin rind scooped out to form the wicked grin on the pumpkin shown in the figure below.

Hint: Set up the triple integral using corrugated spheroidal coordinates.

Happy Halloween!

