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Reminders

• Access your WebWork account only through Canvas!

• Homework A1 on Sections 12.1-12.2 is due Friday August 30

• Applications for an alternate Exam 1 are due no later than
September 4

Review your schedule and apply for all alternate exams at once
by using the Google Form linked from Canvas or the course
home page.
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https://docs.google.com/forms/d/e/1FAIpQLSdAMcpIdWP54-vD2UU1F_M6p3DJMphjuXuEjgvGd-y5GSPcPQ/viewform
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Unit I: Geometry and Motion in Space

12.1 Lecture 1: Three-Dimensional Coordinate Systems
12.2 Lecture 2: Vectors in the Plane and in Space
12.3 Lecture 3: The Dot Product
12.4 Lecture 4: The Cross Product
12.5 Lecture 5: Equations of Lines and Planes, I
12.5 Lecture 6: Equations of Lines and Planes, II
12.6 Lecture 7: Surfaces in Space
13.1 Lecture 8: Vector Functions and Space Curves
13.2 Lecture 9 Derivatives and Integrals of Vector Functions

Lecture 10: Exam I Review
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Learning Goals

• Understand vectors as displacements
• Understand how to combine vectors by addition, subtraction,

and scalar multiplication
• Understand components of vectors
• Understand unit vectors, and know the standard basis vectors i, j,

and k
• Use vectors to solve problems involving forces and velocities
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A vector is a set of instructions for how to move from one location in space to
another. We’ve already seen this in our discussion of coordinate systems.

x

y

z

v = 〈2, 4, 3〉

The vector v = 〈2, 4, 3〉 is an instruction
to move

• 2 units in the x direction

• 4 units in the y direction

• 3 units in the z direction

In this picture:

• the initial point of the vector is
(0, 0, 0)

• the final point is (2, 4, 3).

We could also choose a different initial
point. . .
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x

y

z

A = (0, 0, 1)

B = (2, 4, 4)

Let’s begin at A = (0, 0, 1) The vector
v = 〈2, 4, 3〉 is an instruction to move

• 2 units in the x direction

• 4 units in the y direction

• 3 units in the z direction

In this picture:

• the initial point of the vector is
A = (0, 0, 1)

• the final point is B = (2, 4, 4).

Another name for the vector v is
−→
AB.
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Puzzler

Can you name all of the equal vectors in the parallelogram shown below?

D

A B

C

E
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Vector Addition - Triangle Law

Vector Addition If u and v are vectors positioned so that the initial point
of v is at the terminal point of u, then the sum u + v is the vector from the
initial point of u to the terminal point of v

u

v
u + v

The Triangle Law

Peter A. Perry University of Kentucky
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Vector Addition - Parallelogram Law

The Parallelogram Law

u

v

u+
v

v

u

v+
u

To add u and v, we can either:

• Begin with u

• Displace by v

• Obtain u + v

OR

• Begin with v

• Displace by u

• Obtain v + u

Notice that

u + v = v + u

Peter A. Perry University of Kentucky
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Vector Addition - Spoiler

You can compute u + v by adding components:

u = 〈3, 1〉

v = 〈2, 3〉u + v = 〈5, 4〉

Peter A. Perry University of Kentucky
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Scalar Multiplication

Scalar Multiplication If c is a scalar and v is a vector, then the scalar mul-
tiple cv is a vector |c| times the length of v and whose direction is:

• The same as v, if c > 0

• Opposite to v, if c < 0,

• The zero vector 0 if c = 0

v

2v

1
2 v

−v
−2v

0
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Scalar Multiplication - Spoiler

You can compute cv by componentwise multiplication:

v = 〈1, 1〉
2v = 〈2, 2〉 1

2 v = 〈 1
2 , 1

2 〉

v = 〈1, 1〉
−v = 〈−1,−1〉 −2v = 〈−2,−2〉
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Vector Subtraction

u− v = u + (−1)v

v
u

u− v
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Vector Subtraction - Spoiler
You can compute u− v by componentwise subtraction:

v = 〈−1, 2〉 u = 〈3, 1〉

−v

u− v

u− v = 〈4,−1〉

〈3, 1〉 − 〈−1, 2〉 = 〈4,−1〉

Peter A. Perry University of Kentucky
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Vector Algebra

We’ve seen three operations on vectors: addition, scalar multiplication, and
subtraction. Here are some basic rules for how these operations interact (see your text,
p. 802, and know these properties!)

Properties of Vectors If a, b, and c are vectors, and c, d are scalars:

a + b = b + a a + (b + c) = (a + b) + c

a + 0 = a a + (−a) = 0

c(a + b) = ca + cb (c + d)a = ca + da

(cd)a = c(da) 1a = a

Peter A. Perry University of Kentucky
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Components
Two- and three-dimensional vectors can be specified by their components:

y

x
O

a

〈a1, a2〉a2

a1

a = 〈a1, a2〉

x

y

z

O

〈a1, a2, a3〉

a = 〈a1, a2, 0〉

a = 〈a1, a2, a3〉
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Vector Operations in Components

• The vector
−→
AB from A(x1, y1, z1) to B(x2, y2, z2) has components

−→
AB = 〈x2 − x1, y2 − y1, z2 − z1〉

• The length of a two-dimensional vector a = 〈a1, a2〉 is

|a| =
√

a2
1 + a2

2

• The length of a three-dimensional vector a = 〈a1, a2, a3〉 is

|a| =
√

a2
1 + a2

2 + a2
3

Peter A. Perry University of Kentucky
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Vector Operations in Components

If a = 〈a1, a2〉 and b = 〈b1, b2〉, then:

a + b = 〈a1 + b1, a2 + b2〉
a− b = 〈a1 − b1, a2 − b2〉

ca = 〈ca1, ca2〉

What are the corresponding rules for three-dimensional vectors?

If a = 〈2, 1, 2〉 and b = 〈3,−1, 5〉, find:
• a− b

• 2a + 3b

• |a− b|

Peter A. Perry University of Kentucky

Math 213 - Moving Around in Space



Vectors Combining Vectors Components Unit Vectors Applications

Standard Basis Vectors

Every three-dimensional vector can be expressed in terms of the standard
basis vectors

i = 〈1, 0, 0〉, j = 〈0, 1, 0〉, k = 〈0, 0, 1〉

If a = 〈a1, a2, a3〉, then another way of writing a is

a1i + a2j + a3k

The vectors i, j, k have length 1. Any such vector is called a unit vector.

Peter A. Perry University of Kentucky
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Unit Vectors

You can make any nonzero vector a unit vector if you scalar multiply by the
inverse of its length.

Find a unit vector in the direction of the vector i + 2j

Find a unit vector in the direction of the vector i + j + k

Peter A. Perry University of Kentucky
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1 A quarterback throws a football with an angle of elevation of 40◦ and a speed of
60 ft/sec. Find the horizontal and vertical components of the velocity.

2 A crane suspends a 500 lb steel beam horizontally by support cables. Each
support cable makes an angle of 60◦ with the beam. The cables can withstand a
tension of up to 275 pounds. Would you feel safe standing below this rig?

3 A boatman wants to cross a canal that is 3 km wide and wants to land at a point 2
km upstream from his starting point. The current in the canal flows at 3.5 km/hr
and the speed of his boat is 13 km/hr.

(a) In what direction should he steer?
(b) How long will the trip take?

Peter A. Perry University of Kentucky
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Lecture Review

• We saw that vectors are displacements or instructions for moving from
one point to another in the plane or in space

• We learned the operations of vector addition, vector subtraction, and
scalar multiplication

• We learned how to express vectors in terms of components

• We learned about the unit vectors i, j, and k and how to form a unit
vector from any nonzero vector v: multiply v by the reciprocal of its
length

Peter A. Perry University of Kentucky
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Homework

• Review section 12.2 and prepare for your Thursday recitation.

• Continue working on homework A1 due Friday

• Read and study section 12.3 for Friday’s lecture
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