0000			

Math 213 - Moving Around in Space

Peter A. Perry

University of Kentucky

August 28, 2019

- *** ロ * * @ * *** 差 * * 差 * うくぐ

Peter A. Perr

Reminders

- Access your WebWork account only through Canvas!
- Homework A1 on Sections 12.1-12.2 is due Friday August 30
- Applications for an alternate Exam 1 are due **no later than September 4**

Review your schedule and apply for all alternate exams at once by using the Google Form linked from Canvas or the course home page.

Unit I: Geometry and Motion in Space

- 12.1 Lecture 1: Three-Dimensional Coordinate Systems
- 12.2 Lecture 2: Vectors in the Plane and in Space
- 12.3 Lecture 3: The Dot Product
- 12.4 Lecture 4: The Cross Product
- 12.5 Lecture 5: Equations of Lines and Planes, I
- 12.5 Lecture 6: Equations of Lines and Planes, II
- 12.6 Lecture 7: Surfaces in Space
- 13.1 Lecture 8: Vector Functions and Space Curves
- 13.2 Lecture 9 Derivatives and Integrals of Vector Functions Lecture 10: Exam I Review

Learning Goals

- Understand vectors as displacements
- Understand how to combine vectors by addition, subtraction, and scalar multiplication
- Understand *components* of vectors
- Understand *unit vectors*, and know the standard basis vectors \mathbf{i} , \mathbf{j} , and \mathbf{k}
- Use vectors to solve problems involving forces and velocities

The vector $\mathbf{v} = \langle 2, 4, 3 \rangle$ is an instruction to move

|ロトメ還トメミトメミト||ヨーのの(

niversity of Kentucky

Math 213 - Moving Around in Spa

х

The vector $\mathbf{v} = \langle 2, 4, 3 \rangle$ is an instruction to move

∃ → < ∃</p>

• 2 units in the *x* direction

Peter A. Perry

The vector $\mathbf{v} = \langle 2, 4, 3 \rangle$ is an instruction to move

- 2 units in the *x* direction
- 4 units in the *y* direction

- E

The vector $\mathbf{v} = \langle 2, 4, 3 \rangle$ is an instruction to move

- 2 units in the *x* direction
- 4 units in the *y* direction
- 3 units in the *z* direction

< E

The vector $\mathbf{v} = \langle 2, 4, 3 \rangle$ is an instruction to move

- 2 units in the *x* direction
- 4 units in the *y* direction
- 3 units in the z direction

In this picture:

- the **initial point** of the vector is (0,0,0)
- the **final point** is (2, 4, 3).

We could also choose a different initial point...

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Vectors				plications
0000 000	0000000	000	00	000

Peter A. Peri

Vectors				
0000 000	0000000	000	00	000

• 2 units in the *x* direction

▲口と▲聞と▲臣と▲臣と 臣 のへの

Peter A. Perr

Vectors				
0000 000	0000000	000	00	000

- 2 units in the *x* direction
- 4 units in the *y* direction

メロトメ起 トメミトメミト ヨーのくの

Peter A. Perr

- 2 units in the *x* direction
- 4 units in the *y* direction
- 3 units in the z direction

★ E ► < E</p>

- 2 units in the *x* direction
- 4 units in the *y* direction
- 3 units in the z direction

In this picture:

- the **initial point** of the vector is A = (0, 0, 1)
- the **final point** is *B* = (2, 4, 4).

Another name for the vector \mathbf{v} is \overrightarrow{AB} .

★ ∃ >

	tors Comb		Applications	
	000			
Deer	1			
r uz	zier			

Can you name all of the equal vectors in the parallelogram shown below?

Peter A. Perry

 Vectors
 Components
 Unit Vectors
 Applications

 0000
 000
 000
 000
 000

Vector Addition - Triangle Law

Vector Addition If **u** and **v** are vectors positioned so that the initial point of **v** is at the terminal point of **u**, then the sum $\mathbf{u} + \mathbf{v}$ is the vector from the initial point of **u** to the terminal point of **v**

The Triangle Law

∃ → < ∃</p>

To add **u** and **v**, we can either:

The Parallelogram Law

Peter A. Perry

To add **u** and **v**, we can either:

Begin with u

The Parallelogram Law

Peter A. Perry

To add **u** and **v**, we can either:

- Begin with u
- Displace by **v**

The Parallelogram Law

Peter A. Perry

To add **u** and **v**, we can either:

- Begin with u
- Displace by v
- Obtain **u** + **v**

The Parallelogram Law

Peter A. P<u>err</u>

u v

The Parallelogram Law

To add **u** and **v**, we can either:

э

- Begin with u
- Displace by v
- Obtain $\mathbf{u} + \mathbf{v}$

OR

The Parallelogram Law

To add **u** and **v**, we can either:

- Begin with **u**
- Displace by v
- Obtain $\mathbf{u} + \mathbf{v}$

OR

Begin with v

v v^{×4} v u

The Parallelogram Law

To add **u** and **v**, we can either:

- Begin with **u**
- Displace by **v**
- Obtain $\mathbf{u} + \mathbf{v}$

OR

- Begin with v
- Displace by **u**

Peter A. Perr

u v v v v v u

The Parallelogram Law

To add **u** and **v**, we can either:

- Begin with **u**
- Displace by **v**
- Obtain $\mathbf{u} + \mathbf{v}$

OR

- Begin with v
- Displace by u
- Obtain **v** + **u**

Peter A. Perry

The Parallelogram Law

To add **u** and **v**, we can either:

- Begin with **u**
- Displace by **v**
- Obtain $\mathbf{u} + \mathbf{v}$

OR

- Begin with v
- Displace by **u**
- Obtain **v** + **u**

Notice that

 $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$

∃ → < ∃</p>

You can compute $\mathbf{u} + \mathbf{v}$ by *adding components*:

Peter A. Perr

You can compute $\mathbf{u} + \mathbf{v}$ by *adding components*:

Peter A. Perr

You can compute $\mathbf{u} + \mathbf{v}$ by *adding components*:

Peter A. Perr

You can compute $\mathbf{u} + \mathbf{v}$ by *adding components*:

Peter A. Perr

Vectors Combining Vectors Components Unit Vectors Applications 0000 000000000 000 000 000

Scalar Multiplication

Scalar Multiplication If *c* is a scalar and **v** is a vector, then the **scalar multiple** c**v** is a vector |c| times the length of **v** and whose direction is:

- * ロ * * 個 * * 注 * * 注 * こ 目 * つ < ??

Peter A. Perr

Scalar Multiplication

Scalar Multiplication If *c* is a scalar and **v** is a vector, then the **scalar multiple** c**v** is a vector |c| times the length of **v** and whose direction is:

• The *same* as **v**, if *c* > 0

Peter A. Perry

Scalar Multiplication

Scalar Multiplication If *c* is a scalar and **v** is a vector, then the **scalar multiple** c**v** is a vector |c| times the length of **v** and whose direction is:

- The *same* as **v**, if *c* > 0
- *Opposite* to **v**, if *c* < 0,

Vectors Components Unit Vectors Applications 0000 000 000 000 000 000 000

Scalar Multiplication

Scalar Multiplication If *c* is a scalar and **v** is a vector, then the **scalar multiple** c**v** is a vector |c| times the length of **v** and whose direction is:

- The *same* as **v**, if *c* > 0
- *Opposite* to **v**, if *c* < 0,
- The *zero vector* **0** if *c* = 0

Peter A. Perr

Scalar Multiplication - Spoiler

You can compute *c***v** by *componentwise multiplication*:

Peter A. Perr

Scalar Multiplication - Spoiler

You can compute *c***v** by *componentwise multiplication*:

$$\mathbf{v} = \langle 1, 1 \rangle$$

$$2\mathbf{v} = \langle 2, 2 \rangle$$

$$\frac{1}{2}\mathbf{v} = \langle \frac{1}{2}, \frac{1}{2} \rangle$$

メロト (個) (注) (注) (注) (二) (の)

Peter A. Perr

 Vectors
 Combining Vectors
 Components
 Unit Vectors
 Applications

 0000
 000
 000
 000
 000
 000
 000

Scalar Multiplication - Spoiler

You can compute *c***v** by *componentwise multiplication*:

Peter A. Perr

	Combining Vectors		Applications	
	0000000			

Vector Subtraction

 $\mathbf{u}-\mathbf{v}=\mathbf{u}+(-1)\mathbf{v}$

University of Kentucky

Peter A. Perr

Vector Subtraction - Spoiler

You can compute $\mathbf{u} - \mathbf{v}$ by *componentwise subtraction*:

	Combining Vectors		Applications	
	0000000			

Vector Algebra

We've seen three operations on vectors: addition, scalar multiplication, and subtraction. Here are some basic rules for how these operations interact (see your text, p. 802, and know these properties!)

Properties of Vectors If **a**, **b**, and **c** are vectors, and *c*, *d* are scalars:

$$\mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}$$
 $\mathbf{a} + (\mathbf{b} + \mathbf{c}) = (\mathbf{a} + \mathbf{b}) + \mathbf{c}$ $\mathbf{a} + \mathbf{0} = \mathbf{a}$ $\mathbf{a} + (-\mathbf{a}) = \mathbf{0}$ $c(\mathbf{a} + \mathbf{b}) = c\mathbf{a} + c\mathbf{b}$ $(c + d)\mathbf{a} = c\mathbf{a} + d\mathbf{a}$ $(cd)\mathbf{a} = c(d\mathbf{a})$ $\mathbf{1a} = \mathbf{a}$

University of Kentucky

A B > A B

Peter A. Perry

Components

Two- and three-dimensional vectors can be specified by their *components*:

Peter A. Perr

Components

Two- and three-dimensional vectors can be specified by their *components*:

$$\mathbf{a} = \langle a_1, a_2 \rangle$$

- ▲ ロ ト ▲ 聞 ト ▲ 国 ト ▲ 国 ト つ へ ()

Peter A. Peri

Components

Two- and three-dimensional vectors can be specified by their *components*:

Vector Operations in Components

• The vector \overrightarrow{AB} from $A(x_1, y_1, z_1)$ to $B(x_2, y_2, z_2)$ has components $\overrightarrow{AB} = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle$

• The **length** of a two-dimensional vector $\mathbf{a} = \langle a_1, a_2 \rangle$ is

$$|\mathbf{a}| = \sqrt{a_1^2 + a_2^2}$$

• The **length** of a three-dimensional vector **a** = $\langle a_1, a_2, a_3 \rangle$ is

$$|\mathbf{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$$

University of Kentucky

イロト イポト イヨト イヨ

Vector Operations in Components

If $\mathbf{a} = \langle a_1, a_2 \rangle$ and $\mathbf{b} = \langle b_1, b_2 \rangle$, then:

$$\mathbf{a} + \mathbf{b} = \langle a_1 + b_1, a_2 + b_2 \rangle$$
$$\mathbf{a} - \mathbf{b} = \langle a_1 - b_1, a_2 - b_2 \rangle$$
$$c\mathbf{a} = \langle ca_1, ca_2 \rangle$$

A B > A B >

What are the corresponding rules for three-dimensional vectors?

If
$$\mathbf{a} = \langle 2, 1, 2 \rangle$$
 and $\mathbf{b} = \langle 3, -1, 5 \rangle$, find:

- 2**a** + 3**b**
- |a b|

Standard Basis Vectors

Every three-dimensional vector can be expressed in terms of the **standard basis vectors**

 $\mathbf{i} = \langle 1, 0, 0 \rangle, \quad \mathbf{j} = \langle 0, 1, 0 \rangle, \quad \mathbf{k} = \langle 0, 0, 1 \rangle$

If $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$, then another way of writing \mathbf{a} is

 $a_1\mathbf{i} + a_2\mathbf{j} + a_3\mathbf{k}$

The vectors **i**, **j**, **k** have length 1. Any such vector is called a *unit vector*.

Peter A. Perry

イロト イヨト イヨト イヨト

		Unit Vectors	Applications	
			00	

Unit Vectors

You can make any nonzero vector a unit vector if you scalar multiply by the inverse of its length.

Find a unit vector in the direction of the vector $\mathbf{i} + 2\mathbf{j}$

Find a unit vector in the direction of the vector $\mathbf{i}+\mathbf{j}+\mathbf{k}$

			000

- A quarterback throws a football with an angle of elevation of 40° and a speed of 60 ft/sec. Find the horizontal and vertical components of the velocity.
- 2 A crane suspends a 500 lb steel beam horizontally by support cables. Each support cable makes an angle of 60° with the beam. The cables can withstand a tension of up to 275 pounds. Would you feel safe standing below this rig?
- 3 A boatman wants to cross a canal that is 3 km wide and wants to land at a point 2 km upstream from his starting point. The current in the canal flows at 3.5 km/hr and the speed of his boat is 13 km/hr.
 - (a) In what direction should he steer?
 - (b) How long will the trip take?

Lecture Review

- We saw that vectors are *displacements* or instructions for moving from one point to another in the plane or in space
- We learned the operations of vector addition, vector subtraction, and scalar multiplication
- We learned how to express vectors in terms of components
- We learned about the unit vectors **i**, **j**, and **k** and how to form a *unit vector* from any nonzero vector **v**: multiply **v** by the reciprocal of its length

∃ → < ∃</p>

Homework

- Review section 12.2 and prepare for your Thursday recitation.
- · Continue working on homework A1 due Friday
- Read and study section 12.3 for Friday's lecture