Math 213 - Fundamental Theorem for Line Integrals

Peter A. Perry

University of Kentucky

November 15, 2019

University of Ventualse

Peter A. Perry

Reminders

- Homework C7 is due tonight
- Thanksgiving is coming!

Peter A. Perry

Unit IV: Vector Calculus

Fundamental Theorem for Line Integrals Green's Theorem Curl and Divergence Parametric Surfaces and their Areas Surface Integrals Stokes' Theorem, I Stokes' Theorem, II The Divergence Theorem

Review Review Review

Goals of the Day

- Learn the Vocabulary for Section 16.3
- Learn the Fundamental Theorem for Line Integrals
- Learn what it means for a line integral to be independent of path
- Learn how to tell when a vector field **F** is *conservative* and how to find the function *f* with ∇*f* = **F**

Vocabulary - Open Regions

open region A region D of \mathbb{R}^2 or \mathbb{R}^3 where for every point P in the region, there is a disc or sphere centered at P contained in D

Which of the following regions is open?

	Fundamental Theorem		
	00000		

Chain Rule Puzzler

If f(x, y, z) is a function and $\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle$ is a parameterized curve, what is

$$\frac{d}{dt}\left[f(x(t),y(z),z(t))\right]$$

in terms of ∇f and $\mathbf{r}'(t)$?

Peter A. Perr

	Fundamental Theorem		
	00000		

Chain Rule Puzzler

If f(x, y, z) is a function and $\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle$ is a parameterized curve, what is

$$\frac{d}{dt}\left[f(x(t),y(z),z(t))\right]$$

in terms of ∇f and $\mathbf{r}'(t)$?

Answer: $\nabla f(\mathbf{r}(t)) \cdot \mathbf{r}'(t)$

Peter A. Perry

Remember the Fundamental Theorem of Calculus?

What is

 $\int_a^b \frac{d}{dt} F(t) \, dt \, ?$

(Remember the Net Change Theorem?)

▲□▶▲□▶▲□▶▲□▶ = のへで

Peter A. Perry

Remember the Fundamental Theorem of Calculus?

What is

$$\int_{a}^{b} \frac{d}{dt} F(t) \, dt \, ?$$

(Remember the Net Change Theorem?)

Answer: F(b) - F(a)

Peter A. Perry

Line Integral of a Gradient Vector Field

Suppose $\mathbf{F} = \nabla f$ for a potential function f(x, y, z)Suppose $\mathbf{r}(t)$, $a \le t \le b$ is a parameterized path *C*.

Is there a simple way to compute

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{a}^{b} \nabla f(\mathbf{r}(t)) \cdot \mathbf{r}'(t) \, dt = \int_{a}^{b} \frac{d}{dt} \left(f(\mathbf{r}(t)) \right) \, dt$$

like the one-variable "net change theorem"?

Line Integral of a Gradient Vector Field

Suppose $\mathbf{F} = \nabla f$ for a potential function f(x, y, z)Suppose $\mathbf{r}(t)$, $a \le t \le b$ is a parameterized path *C*.

Is there a simple way to compute

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{a}^{b} \nabla f(\mathbf{r}(t)) \cdot \mathbf{r}'(t) \, dt = \int_{a}^{b} \frac{d}{dt} \left(f(\mathbf{r}(t)) \right) \, dt$$

- E

like the one-variable "net change theorem"?

Answer: You bet!

Peter A. Perry

Line Integral of a Gradient Vector Field

Theorem Suppose that $\mathbf{F}(\mathbf{r}) = \nabla f(\mathbf{r})$ is a gradient vector field, and *C* is a path parameterized by $\mathbf{r}(t)$, $a \le t \le b$. Then

$$\int_C \mathbf{F} \cdot d\mathbf{r} = f(\mathbf{r}(b)) - f(\mathbf{r}(a))$$

イロト イポト イヨト イヨト

How to think about the Fundamental Theorem for Line Integrals

The figure at the left shows a curve *C* and a contour map of a function *f* whose gradient is continuous. Find $\int_C \nabla f \cdot d\mathbf{r}$.

Hint: Think of f as a height function, and the contour plot as a contour map. The gradient gives the magnitude and direction of the greatest change in height at any given point.

Learning Goals O	Vocabulary O	Fundamental Theorem 00000	Path Independence	Conservative Fields	00000000
Vocabula	ry - Pat	hs and Vect	or Fields		
path closed pa	A piec ath A curv	cewise smooth curve we whose initial and t	terminal points are th	ne same	
conserva vector fie	tive A vected defined to the second s	tor field F which is th the <i>potential</i> , so that	the gradient of a scalar $\mathbf{F} = abla f$	function f ,	

Which of the following is not a closed path?

P

Peter A. Perry

	Path Independence	
	000	

Compute the following:

Peter A. Perry

	Path Independence	
	000	

Compute the following:

•
$$\int_{C_1} \nabla f \cdot d\mathbf{r}$$

Peter A. Perry

	Path Independence	
	000	

Compute the following:

•
$$\int_{C_1} \nabla f \cdot d\mathbf{r}$$

• $\int_{C_2} \nabla f \cdot d\mathbf{r}$

Peter A. Perry

	Path Independence	
	000	

Compute the following:

- $\int_{C_1} \nabla f \cdot d\mathbf{r}$
- $\int_{C_2} \nabla f \cdot d\mathbf{r}$
- Does it matter what path connects the endpoints?

∃ → < ∃</p>

Peter A. Perry

	Path Independence	
	000	

Compute the following:

- $\int_{C_1} \nabla f \cdot d\mathbf{r}$
- $\int_{C_2} \nabla f \cdot d\mathbf{r}$
- Does it matter what path connects the endpoints?

Definition A line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ is *independent of path* in a domain *D* f

$$\int_{C_1} \mathbf{F} \cdot d\mathbf{r} = \int_{C_2} \mathbf{F} \cdot d\mathbf{r}$$

for any two paths C_1 and C_2 that have the same initial and terminal points.

Peter A. Perry

Path Independence and Closed Paths

If

 $\int_{C_1} \mathbf{F} \cdot d\mathbf{r} = \int_{C_2} \mathbf{F} \cdot d\mathbf{r}$

and we reverse the direction of $C_2 \ldots$

Peter A. Perr

Path Independence and Closed Paths

If

 $\int_{C_1} \mathbf{F} \cdot d\mathbf{r} = \int_{C_2} \mathbf{F} \cdot d\mathbf{r}$

and we reverse the direction of $C_2 \ldots$

Then

$$\int_C \mathbf{F} \cdot d\mathbf{r} = 0$$

where *C* is the closed loop path that starts with C_1 and ends with $-C_2$.

★ ∃ >

Path Independence and Closed Paths

$$\int_{C_1} \mathbf{F} \cdot d\mathbf{r} = \int_{C_2} \mathbf{F} \cdot d\mathbf{r}$$

and we reverse the direction of $C_2 \ldots$

Then

If

$$\int_C \mathbf{F} \cdot d\mathbf{r} = 0$$

where *C* is the closed loop path that starts with C_1 and ends with $-C_2$.

• • = • • =

Theorem The integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ is independent of path for all paths in a domain *D* if and only if $\int_C \mathbf{F} \cdot d\mathbf{r} = 0$ for every closed path in *D*.

Peter A. Perry

Learning Goals O	Vocabulary O	Fundamental Theorem 00000	Path Independence 000	Conservative Fields	•0000000
Vocabula	ry - Co	nnected Reg	gions		
connecte	d region	A region D of \mathbb{R}^2 or \mathbb{R} can be connected by a	³ where any points <i>P</i> path contained in <i>D</i>	and Q	
domain		An open, connected re	egion of \mathbb{R}^2 or \mathbb{R}^3		

Which of these regions is *not* connected?

Peter A. Perry

Learning Goals O	Vocabulary O	Fundamental Theorem 00000	Path Independence 000	Conservative Fields	•0000000
Vocabula	ry - Co	nnected Reg	gions		
connecte	d region	A region D of \mathbb{R}^2 or \mathbb{R} can be connected by a	³ where any points <i>P</i> path contained in <i>D</i>	and Q	
domain		An open, connected re	egion of \mathbb{R}^2 or \mathbb{R}^3		

Which of these regions is *not* connected?

Peter A. Perry

Learning Goals O	Vocabulary O	Fundamental Theorem 00000	Path Independence 000	Conservative Fields	00000000
Vocabulary - Simply Connected Regions					
simple curve		A curve that doesn't intersect itself			
simply connected		A connected region so that every simple closed curve in D surrounds only points of D			

Which of these regions is not simply connected?

University of Kentucky

First Theorem of the Day

Theorem Suppose **F** is a vector field that is continuous on an open, simply connected region *D*. If $\int_C \mathbf{F} \cdot d\mathbf{r}$ is independent of path in *D*, then **F** is a conservative vector field on *D*; that is, there is a function *f* so that $\nabla f = \mathbf{F}$

How do you find the function f (two dimensions)?

- Pick a point (*a*, *b*) in the domain *D*
- Compute

$$f(x,y) = \int_{(a,b)}^{(x,y)} \mathbf{F} \cdot d\mathbf{r}$$

• In fact, you can show that this function *f* satisfies

$$\mathbf{F}(x,y) = \frac{\partial f}{\partial x}(x,y)\mathbf{i} + \frac{\partial f}{\partial y}(x,y)\mathbf{j}$$

∃ → < ∃</p>

Key Observation If $F = \nabla f$ then

$$\mathbf{F}(x,y) = P(x,y)\mathbf{i} + Q(x,y)\mathbf{j} = \frac{\partial f}{\partial x}(x,y)\mathbf{i} + \frac{\partial f}{\partial y}\mathbf{j}$$

Compute $\partial P/\partial y$ and $\partial Q/\partial x$ as a second derivative of *f*:

Peter A. Perry

Key Observation If $F = \nabla f$ then

$$\mathbf{F}(x,y) = P(x,y)\mathbf{i} + Q(x,y)\mathbf{j} = \frac{\partial f}{\partial x}(x,y)\mathbf{i} + \frac{\partial f}{\partial y}\mathbf{j}$$

Compute $\partial P/\partial y$ and $\partial Q/\partial x$ as a second derivative of *f*:

$$\frac{\partial P}{\partial y} = \frac{\partial}{\partial y}\frac{\partial f}{\partial x} = \frac{\partial^2 f}{\partial y \partial x}$$

▲□▶▲圖▶★吾▶★吾▶ 吾 の�?

Peter A. Perry

Key Observation If $F = \nabla f$ then

$$\mathbf{F}(x,y) = P(x,y)\mathbf{i} + Q(x,y)\mathbf{j} = \frac{\partial f}{\partial x}(x,y)\mathbf{i} + \frac{\partial f}{\partial y}\mathbf{j}$$

Compute $\partial P/\partial y$ and $\partial Q/\partial x$ as a second derivative of *f*:

$$\frac{\partial P}{\partial y} = \frac{\partial}{\partial y}\frac{\partial f}{\partial x} = \frac{\partial^2 f}{\partial y \partial x} \qquad \frac{\partial Q}{\partial x} = \frac{\partial}{\partial x}\frac{\partial f}{\partial y} = \frac{\partial^2 f}{\partial x \partial y}$$

Peter A. Perry

Key Observation If $F = \nabla f$ then

$$\mathbf{F}(x,y) = P(x,y)\mathbf{i} + Q(x,y)\mathbf{j} = \frac{\partial f}{\partial x}(x,y)\mathbf{i} + \frac{\partial f}{\partial y}\mathbf{j}$$

Compute $\partial P/\partial y$ and $\partial Q/\partial x$ as a second derivative of *f*:

$$\frac{\partial P}{\partial y} = \frac{\partial}{\partial y}\frac{\partial f}{\partial x} = \frac{\partial^2 f}{\partial y \partial x} \qquad \qquad \frac{\partial Q}{\partial x} = \frac{\partial}{\partial x}\frac{\partial f}{\partial y} = \frac{\partial^2 f}{\partial x \partial y}$$

So, by Clairaut's Theorem, for a conservative vector field:

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

3 → ∢ 3

Peter A. Perry

Find the Conservative Vector Field

Theorem If $\mathbf{F}(x, y) = P(x, y)\mathbf{i} + Q(x, y)\mathbf{j}$ is a conservative vector field, and *P*, *Q* have continuous first-order partials on a domain *D*, then throughout *D*

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

Which of the following vector fields are definitely not conservative?

1
$$\mathbf{F}(x,y) = -y\mathbf{i} + x\mathbf{j}$$

2 $\mathbf{F}(x,y) = x^3\mathbf{i} + y^2\mathbf{j}$
3 $\mathbf{F}(x,y) = ye^x\mathbf{i} + (e^x + e^y)\mathbf{j}$
4 $\mathbf{F}(x,y) = \frac{-y}{x^2 + y^2}\mathbf{i} + \frac{x}{x^2 + y^2}\mathbf{j}, \quad (x,y) \neq (0,0)$

University of Kentucky

• • = • • =

There's One in Every Crowd

- Does F satisfy the "conservative vector field" condition?
- 2 Suppose *C* is the circle $x^2 + y^2 = 1$. What is $\int_C \mathbf{F} \cdot d\mathbf{r}$ for the vector field shown?
- 3 Is the domain

$$\{(x,y): x^2 + y^2 \neq 0\}$$

simply connected?

University of Kentucky

∃ >

Peter A. Perry

 Learning Goals
 Vocabulary
 Fundamental Theorem
 Path Independence
 Conservative Fields

 O
 O
 OOOOOO
 OOOOOO●OO

Second Theorem of the Day

Theorem Let $\mathbf{F} = P\mathbf{i} + Q\mathbf{j}$ be a vector field defined on an open, simply connected region *D*. Suppose that *P* and *Q* have continuous partial derivatives and

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

throughout *D*. Then **F** is conservative.

Which of the following vector fields are conservative?

1
$$\mathbf{F}(x, y) = -y\mathbf{i} + x\mathbf{j}$$

2 $\mathbf{F}(x, y) = x^{3}\mathbf{i} + y^{2}\mathbf{j}$
3 $\mathbf{F}(x, y) = ye^{x}\mathbf{i} + (e^{x} + e^{y})\mathbf{j}$
4 $\mathbf{F}(x, y) = \frac{-y}{x^{2} + y^{2}}\mathbf{i} + \frac{x}{x^{2} + y^{2}}\mathbf{j}, \quad (x, y) \neq (0, 0)$

Recall that if $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} = \nabla f$, then

$$P = \frac{\partial f}{\partial x}, \quad Q = \frac{\partial f}{\partial y}$$

1

Example Find *f* if $\mathbf{F}(x, y) = (y^2 - 2x)\mathbf{i} + 2xy\mathbf{j}$

Peter A. Perry

Recall that if $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} = \nabla f$, then

$$P = \frac{\partial f}{\partial x}, \quad Q = \frac{\partial f}{\partial y}$$

Example Find *f* if $\mathbf{F}(x, y) = (y^2 - 2x)\mathbf{i} + 2xy\mathbf{j}$

1
$$\frac{\partial f}{\partial x} = y^2 - 2x$$
 so taking antiderivatives in x
 $f(x, y) = y^2 x - x^2 + C(y)$

where C(y) is a constant *that may depend on y*

イロト イポト イヨト イヨト

Recall that if $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} = \nabla f$, then

$$P = \frac{\partial f}{\partial x}, \quad Q = \frac{\partial f}{\partial y}$$

Example Find *f* if $\mathbf{F}(x, y) = (y^2 - 2x)\mathbf{i} + 2xy\mathbf{j}$

1
$$\frac{\partial f}{\partial x} = y^2 - 2x$$
 so taking antiderivatives in x
 $f(x, y) = y^2 x - x^2 + C(y)$

where C(y) is a constant *that may depend on y*

2 From the answer we found in step 1, $\frac{\partial f}{\partial y} = 2xy + C'(y) = 2xy$ so C'(y) = 0

イロト イロト イヨト イヨト

Math 213 - Fundamental Theorem for Line Integral

Peter A. Perry

Recall that if $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} = \nabla f$, then

$$P = \frac{\partial f}{\partial x}, \quad Q = \frac{\partial f}{\partial y}$$

Example Find *f* if $\mathbf{F}(x, y) = (y^2 - 2x)\mathbf{i} + 2xy\mathbf{j}$

1
$$\frac{\partial f}{\partial x} = y^2 - 2x$$
 so taking antiderivatives in x
 $f(x, y) = y^2 x - x^2 + C(y)$

where C(y) is a constant *that may depend on y*

2 From the answer we found in step 1, $\frac{\partial f}{\partial y} = 2xy + C'(y) = 2xy$ so C'(y) = 0

イロト イロト イヨト イヨト

3

3 Finally,
$$f(x, y) = xy^2 - x^2 + C$$

Peter A. Perry

Line Integrals of Conservative Vector Fields

Recall that if $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} = \nabla f$, then

$$P = \frac{\partial f}{\partial x}, \quad Q = \frac{\partial f}{\partial y}$$

Example: Find $\int_C \mathbf{F} \cdot d\mathbf{r}$ by finding f so that $\nabla f = \mathbf{F}$ if:

$$\mathbf{F}(x,y) = (1+xy)e^{xy}\mathbf{i} + x^2e^{xy}\mathbf{j}$$

$$C: \mathbf{r}(t) = \cos t\mathbf{i} + 2\sin t\mathbf{j}, \quad 0 \le t \le \pi/2$$

(Ē) Ē ∽ Q University of Kentucky

Peter A. Perry