Math 213 - Curl and Divergence

Peter A. Perry

University of Kentucky

November 20, 2019

- **・ ロ ト ・ 屈 ト ・ 王 ト ・ 王 ・ 今**へで

Peter A. Perr

Math 213 - Curl and Divergence

Reminders

- Quiz #9 on 16.1-16.2 (vector fields, line integrals) takes place tomorrow
- Homework D1 is due on Friday of this week
- Thanksgiving is coming!

Unit IV: Vector Calculus

Fundamental Theorem for Line Integrals Green's Theorem

Curl and Divergence

Parametric Surfaces and their Areas

Surface Integrals

Stokes' Theorem, I

Stokes' Theorem, II

The Divergence Theorem

Review Review

Review

Goals of the Day

This lecture is about two very important 'derivatives' of a vector field. You'll learn:

- How to compute the *curl* of a vector field and what it measures
- How to compute the *divergence* of a vector field and what it measures
- (Sneak preview) The theorems that give the meaning of divergence and curl

	Curl	
	0000	
C 1		
('11rl		
Cull		

If $F = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$ is a vector field on \mathbb{R}^3 , and the partial derivatives of *P*, *Q*, and *R* all exist, then the *curl* of **F** is a new vector field:

$$\operatorname{curl} \mathbf{F} = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right) \mathbf{i} + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right) \mathbf{j} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \mathbf{k}$$

This new vector field measures the "rotation" of the vector field **F** at a given point (x, y, z):

イロト イポト イヨト イヨト

- Its direction is the axis of rotation, dictated by the right-hand rule
- Its *magnitude* is the angular speed of rotation

	Curl		
	0000		
Cuml			
Cull			

$$\operatorname{curl} \mathbf{F} = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right)\mathbf{i} + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right)\mathbf{j} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)\mathbf{k}$$

The new vector field curl F is sometimes written $\nabla \times F$ because of an easier-to-remember formula:

$$\operatorname{curl} \mathbf{F} = \nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix}$$

University of Kentucky

イロト イポト イヨト イヨト

Peter A. Perry

Math 213 - Curl and Divergence

Learning Goals O	Curl 0000	Divergence The Big The 000000	ee 00
Curl	y = xi + yj + zk	If $\mathbf{F} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ then $\nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x & y & z \end{vmatrix} = 0$	
$\mathbf{F}(x,y,z)$	$y = y\mathbf{i} - x\mathbf{j} + 0\mathbf{k}$	If $\mathbf{F} = y\mathbf{i} - x\mathbf{j} + 0\mathbf{k}$ then	
		$ abla imes \mathbf{F} = egin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \ rac{\partial}{\partial x} & rac{\partial}{\partial y} & rac{\partial}{\partial z} \ y & -x & 0 \end{bmatrix} = -2\mathbf{k}$	

 1_{-1}

-14 -0.50 0.5

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

	Curl		
	0000		
Curl			

A gradient vector field has zero curl:

$$\nabla \times (\nabla f) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \end{vmatrix}$$
$$= \left(\frac{\partial^2 f}{\partial x \partial y} - \frac{\partial^2 f}{\partial y \partial x}\right) \mathbf{i} + \left(\frac{\partial^2 f}{\partial y \partial z} - \frac{\partial^2 f}{\partial z \partial y}\right) \mathbf{j} + \left(\frac{\partial^2 f}{\partial z \partial x} - \frac{\partial^2 f}{\partial x \partial z}\right) \mathbf{k}$$
$$= \mathbf{0}$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

3

so the curl "detects" conservative vector fields.

	00000	
D :		

Divergence

The *divergence* of a vector field $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$ is a *scalar* function:

div
$$\mathbf{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$$

Sometimes div **F** is written $\nabla \cdot \mathbf{F}$:

$$\nabla \cdot \mathbf{F} = \left\langle \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right\rangle \cdot \langle P, Q, R \rangle = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$$

The divergence computes the outflow per unit volume of the vector field (thought of as a velocity field)

イロト イポト イヨト イヨト

		Divergence	
0	0000	00000	0
Divergence			
$\mathbf{F}(x, y, z) =$	$x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$		
		If $\mathbf{F} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ then	
0*		$\nabla \cdot \mathbf{F} = \frac{\partial x}{\partial x} + \frac{\partial y}{\partial u} + \frac{\partial z}{\partial z} = 3$	3

(same outflow at each point of space)

0.5

1 - 1

$$\nabla \cdot \mathbf{F} = \frac{\partial y}{\partial x} - \frac{\partial x}{\partial y} + 0 = 0$$

2

(no outflow anywhere in space)

-1 -0.5

	Divergence	
	000000	
Divorgonco		
Divergence		

Remember that $\nabla \times (\nabla f) = 0$? There is an analogous result for the divergence:

 $\operatorname{div}\operatorname{curl} F=0$

You can see this using the definitions of divergence and curl:

div curl
$$\mathbf{F} = \frac{\partial}{\partial x} \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) + \frac{\partial}{\partial y} \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) + \frac{\partial}{\partial z} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right)$$

The second partial derivatives cancel in pairs by Clairaut's theorem.

It turns out that any vector field F can be written as

$$\mathbf{F} = \nabla f + \nabla \times \mathbf{A}$$

イロト イポト イヨト イヨト

for a scalar potential f and a vector potential **A**.

Peter A. Perry

 Learning Goals
 Curl
 Divergence
 The Big Three

 0
 0000
 000●00
 00

Divergence and Curl

If f is a scalar function and **F** is a vector function, which of these expressions make sense? Do they define a scalar or a vector? Remember that

• • = • • =

- curl **F** is a vector
- div **F** is a scalar
- (a) $\operatorname{curl} f$ (b) $\operatorname{grad} f$
- (c) div **F** (d) curl(grad f)
- $(e) \quad \ \ grad\,F \qquad \qquad (f) \quad \ \ grad({\rm div}\,F)$
- (g) $\operatorname{div}(\operatorname{grad} f)$ (h) $\operatorname{grad}(\operatorname{div} f)$
- (i) $\operatorname{curl}(\operatorname{curl} \mathbf{F})$ (j) $\operatorname{div}(\operatorname{div} f)$

Conservative Vector Fields Again

Determine whether the vector field

$$\mathbf{F}(x,y,z) = y^2 z^3 \mathbf{i} + 2xyz^3 \mathbf{j} + 3xy^2 z^2 \mathbf{k}$$

is conservative and, if so, find a function f so that $\nabla f = \mathbf{F}$.

Mail 212 Cont - 11

		000000	
Vector Ider	ntities		

Show that $\operatorname{div}(f\mathbf{F}) = \nabla f \cdot \mathbf{F} + f \operatorname{div} \mathbf{F}$ where $\mathbf{F} = \langle P, Q, R \rangle$

What is the right 'product rule' for $curl(f\mathbf{F})$?

What is div grad *f*?

Peter A. Perr

Math 213 - Curl and Divergenc

		Divergence	
0	0000	000000	00

Vector Identities

Show that $\operatorname{div}(f\mathbf{F}) = \nabla f \cdot \mathbf{F} + f \operatorname{div} \mathbf{F}$ where $\mathbf{F} = \langle P, Q, R \rangle$

$$div(f\mathbf{F}) = \frac{\partial}{\partial x}(fP) + \frac{\partial}{\partial y}(fQ) + \frac{\partial}{\partial z}(fR)$$
$$= \frac{\partial f}{\partial x}P + \frac{\partial f}{\partial y}Q + \frac{\partial f}{\partial z}R + f\left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}\right)$$
$$= grad f \cdot \mathbf{F} + f \operatorname{div} \mathbf{F}$$

What is the right 'product rule' for $curl(f\mathbf{F})$?

What is div grad *f*?

- * ロ * * @ * * 差 * 差 * 差 * の < @

Peter A. Perr

Math 213 - Curl and Divergence

		Divergence	
0	0000	000000	00

Vector Identities

Show that $\operatorname{div}(f\mathbf{F}) = \nabla f \cdot \mathbf{F} + f \operatorname{div} \mathbf{F}$ where $\mathbf{F} = \langle P, Q, R \rangle$

$$div(f\mathbf{F}) = \frac{\partial}{\partial x}(fP) + \frac{\partial}{\partial y}(fQ) + \frac{\partial}{\partial z}(fR)$$

= $\frac{\partial f}{\partial x}P + \frac{\partial f}{\partial y}Q + \frac{\partial f}{\partial z}R + f\left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}\right)$
= grad $f \cdot \mathbf{F} + f \operatorname{div} \mathbf{F}$

What is the right 'product rule' for $curl(f\mathbf{F})$?

 $\operatorname{curl}(f\mathbf{F}) = \operatorname{grad} f \times \mathbf{F} + f \operatorname{curl}(\mathbf{F})$

What is div grad *f*?

		Divergence	
0	0000	000000	- 00

Vector Identities

Show that $\operatorname{div}(f\mathbf{F}) = \nabla f \cdot \mathbf{F} + f \operatorname{div} \mathbf{F}$ where $\mathbf{F} = \langle P, Q, R \rangle$

$$div(f\mathbf{F}) = \frac{\partial}{\partial x}(fP) + \frac{\partial}{\partial y}(fQ) + \frac{\partial}{\partial z}(fR)$$

= $\frac{\partial f}{\partial x}P + \frac{\partial f}{\partial y}Q + \frac{\partial f}{\partial z}R + f\left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}\right)$
= grad $f \cdot \mathbf{F} + f \operatorname{div} \mathbf{F}$

What is the right 'product rule' for $curl(f\mathbf{F})$?

 $\operatorname{curl}(f\mathbf{F}) = \operatorname{grad} f \times \mathbf{F} + f \operatorname{curl}(\mathbf{F})$

What is div grad *f*?

div grad
$$f = \operatorname{div} \left\langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right\rangle$$

= $\frac{\partial}{\partial x} \frac{\partial f}{\partial x} + \frac{\partial}{\partial y} \frac{\partial f}{\partial y} + \frac{\partial}{\partial z} \frac{\partial f}{\partial z}$
= $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$

イロト イポト イヨト イヨ

Math 213 - Curl and Divergenc

Divergence Theorem, Stokes' Theorem

Divergence Theorem Suppose E is a simple solid region and S is its boundary. Let **N** be the outward normal to S. Then

$$\iint_{S} \mathbf{F} \cdot \mathbf{N} \, dS = \iiint_{E} \operatorname{div} \mathbf{F} \, dV$$

Stokes' Theorem Suppose S is an oriented piecewise-smooth surface with outward normal **N**, bounded by a simple closed curve C with piecewise smooth boundary. Then

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \iint_S \operatorname{curl} \mathbf{F} \cdot \mathbf{N} \, dS$$

Peter A. Perr

University of Kentucky

The 'Big Three' Theorems of Vector Calculus

$$F(b) - F(a) = \int_{a}^{b} F'(x) \, dx \qquad (Fundamental)$$

$$\int_{C} P \, dx + Q \, dy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dA \tag{Green}$$

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \iint_{S} \operatorname{curl} \mathbf{F} \cdot \mathbf{N} \, dS \tag{Stokes}$$

$$\iint_{S} \mathbf{F} \cdot \mathbf{N} \, dS = \iiint_{E} \operatorname{div} \mathbf{F} \, dV \qquad \text{(Divergence)}$$

イロト イポト イヨト イヨト

Math 213 - Curl and Divergen