Math 213 - Surface Integrals

Peter A. Perry
University of Kentucky

November 25, 2019

Reminders

- Homework D2 is due tonight
- Thanksgiving is coming!

Unit IV: Vector Calculus

Fundamental Theorem for Line Integrals
Green's Theorem
Curl and Divergence
Parametric Surfaces and their Areas
Surface Integrals
Stokes' Theorem, I
Stokes' Theorem, II
The Divergence Theorem

Review
Review
Review

Goals of the Day

This lecture is about parametric surfaces. You'll learn:

- How to integrate a scalar function over a parameterized surface
- What an oriented surface is and how to compute its unit normal
- How to integrate a vector field over a parameterized surface

Sneak Preview - Scalar Surface Integrals

Scalar Line Integrals

Scalar Surface Integrals

If C is parameterized by

$$
\mathbf{r}(t)=\langle x(t), y(t), z(t))\rangle
$$

$a \leq t \leq b:$

$$
\int_{C} F d s=\int_{a}^{b} F(x(t), y(t), z(t)) d s
$$

where

$$
d s=\sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}+z^{\prime}(t)^{2}} d t
$$

If S is parameterized by

$$
\mathbf{r}(u, v)=\langle x(u, v), y(u, v), z(u, v)\rangle,
$$

$$
(u, v) \in D:
$$

$$
\iint_{S} F d S=\iint_{D} F\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| d u d v
$$

where

$$
\begin{aligned}
F & =F(x(u, v), y(u, v), z(u, v)) \\
\mathbf{r}_{u} & =\frac{\partial}{\partial u} \mathbf{r}(u, v) \\
\mathbf{r}_{v} & =\frac{\partial}{\partial v} \mathbf{r}(u, v)
\end{aligned}
$$

Sneak Preview - Vector Surface Integrals

Vector Line Integrals

If C is parameterized by

$$
\mathbf{r}(t)=\langle x(t), y(t), z(t))\rangle
$$

$$
a \leq t \leq b:
$$

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot d \mathbf{r} & =\int_{a}^{b} \mathbf{F} \cdot \mathbf{T}(t) d s \\
\mathbf{F} & =\mathbf{F}(x(t), y(t), z(t)) \\
\mathbf{T}(t) & =\frac{\mathbf{r}^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|}
\end{aligned}
$$

Vector Surface Integrals

If S is parameterized by

$$
\mathbf{r}(u, v)=\langle x(u, v), y(u, v), z(u, v)\rangle,
$$

$$
(u, v) \in D:
$$

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iint_{D} \mathbf{F} \cdot \mathbf{N} d u d v
$$

$$
\begin{aligned}
\mathbf{F} & =\mathbf{F}(x(u, v), y(u, v), z(u, v)) \\
\mathbf{N} & =\mathbf{r}_{u} \times \mathbf{r}_{v}
\end{aligned}
$$

Parameterized Surface Review

A parameterized surface is traced out by $\mathbf{r}(u, v)$ where $(u, v) \in D$, a region in the $u v$ plane.

$\sin v \cos u \mathbf{i}+\sin v \sin u \mathbf{j}+\cos v \mathbf{k}$

Parameterized Surface Review

A parameterized surface is traced out by $\mathbf{r}(u, v)$ where $(u, v) \in D$, a region in the $u v$ plane.

If v is held fixed and u varies, the result is a curve along the surface.

$\sin v \cos u \mathbf{i}+\sin v \sin u \mathbf{j}+\cos v \mathbf{k}$

Parameterized Surface Review

A parameterized surface is traced out by $\mathbf{r}(u, v)$ where $(u, v) \in D$, a region in the $u v$ plane.

If v is held fixed and u varies, the result is a curve along the surface.

If u is held fixed and v varies, the result is a different curve along the surface.

$\sin v \cos u \mathbf{i}+\sin v \sin u \mathbf{j}+\cos v \mathbf{k}$

Parameterized Surface Review

$\sin v \cos u \mathbf{i}+\sin v \sin u \mathbf{j}+\cos v \mathbf{k}$

A parameterized surface is traced out by $\mathbf{r}(u, v)$ where $(u, v) \in D$, a region in the $u v$ plane.

If v is held fixed and u varies, the result is a curve along the surface.

If u is held fixed and v varies, the result is a different curve along the surface.

Each curve has a tangent vector, so there are two independent tangent vectors

$$
\mathbf{r}_{u}=\partial \mathbf{r} / \partial u, \quad \mathbf{r}_{v}=\partial \mathbf{r} / \partial v
$$

Parameterized Surface Review

The parameter space D

$\sin v \cos u \mathbf{i}+\sin v \sin u \mathbf{j}+\cos v \mathbf{k}$

A parameterized surface is traced out by $\mathbf{r}(u, v)$ where $(u, v) \in D$, a region in the $u v$ plane.

If v is held fixed and u varies, the result is a curve along the surface.

If u is held fixed and v varies, the result is a different curve along the surface.

Each curve has a tangent vector, so there are two independent tangent vectors

$$
\mathbf{r}_{u}=\partial \mathbf{r} / \partial u, \quad \mathbf{r}_{v}=\partial \mathbf{r} / \partial v
$$

The vectors \mathbf{r}_{u} and \mathbf{r}_{v} span a tangent plane

Parameterized Surface Review

The parameter space D

$\sin v \cos u \mathbf{i}+\sin v \sin u \mathbf{j}+\cos v \mathbf{k}$

A parameterized surface is traced out by $\mathbf{r}(u, v)$ where $(u, v) \in D$, a region in the $u v$ plane.

If v is held fixed and u varies, the result is a curve along the surface.

If u is held fixed and v varies, the result is a different curve along the surface.

Each curve has a tangent vector, so there are two independent tangent vectors

$$
\mathbf{r}_{u}=\partial \mathbf{r} / \partial u, \quad \mathbf{r}_{v}=\partial \mathbf{r} / \partial v
$$

The vectors \mathbf{r}_{u} and \mathbf{r}_{v} span a tangent plane
The normal to the tangent plane is

$$
\mathbf{N}=\mathbf{r}_{u} \times \mathbf{r}_{v}
$$

Scalar Surface Integrals

If S is parameterized by $\mathbf{r}(u, v)$ for $(u, v) \in D$, and f is a function continuous in a neighborhood of S,

$$
\iint_{S} f(x, y, z) d S=\iint_{D} F(x(u, v), y(u, v), z(u, v))\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| d u d v
$$

(1) Suppose that $f(x, y, z)=g\left(\sqrt{x^{2}+y^{2}+z^{2}}\right)$ where $g(2)=5$. Find $\iint_{S} f(x, y, z) d S$ if S is the sphere $x^{2}+y^{2}+z^{2}=4$.
(2) Find $\iint_{S} x z d S$ if S is the part of the plane $2 x+2 y+z=4$ that lies in the first octant.
(3) Find $\iint y^{2} d S$ if S is the part of the sphere $x^{2}+y^{2}+z^{2}=1$ that lies above the cone $z=\sqrt{x^{2}+y^{2}}$.

The Oriented Unit Normal to a Surface

A surface S is called an oriented surface if there is a unit normal vector \mathbf{n} at every point on the surface that varies continuously along the surface. Every parameterized surface has such a unit normal, given by

$$
\mathbf{n}=\frac{\mathbf{r}_{u} \times \mathbf{r}_{v}}{\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right|}
$$

Every orientable surface in \mathbb{R}^{3} has two possible orientations, one with \mathbf{n} and the other with - \mathbf{n}.

The orientation of the sphere with $\mathbf{n}=\frac{\mathbf{r}_{u} \times \mathbf{r}_{v}}{\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right|}$

The orientation of the sphere with $\mathbf{n}=-\frac{\mathbf{r}_{u} \times \mathbf{r}_{\mathcal{V}}}{\left|\mathbf{r}_{u} \times \mathbf{r}_{\mathcal{V}}\right|}$

Oriented Surfaces versus the Möbius Strip

The Möbius Band

August Ferdinand Möbius (1790-1868)

Vector Surface Integrals

If \mathbf{F} is a continuous vector field defined on an oriented surface S with unit normal vector \mathbf{n}, the surface integral of \mathbf{F} over S is

$$
\iint_{S} \mathbf{F} d \mathbf{S}=\iint_{S} \mathbf{F} \cdot \mathbf{n} d S
$$

This integral is also called the flux of \mathbf{F} across S. Depending on the choice of normal, it measures either what goes in (inward normal) or what comes out (outward normal).
(1) Find the flux of $\mathbf{F}(x, y, z)=x \mathbf{i}+y \mathbf{j}+z^{2} \mathbf{k}$ across S if S is the sphere of radius 1 and center at the origin
(2) Find the flux of $\mathbf{F}(x, y, z)=y \mathbf{j}-z \mathbf{k}$ across the paraboloid $y=x^{2}+z^{2}, 0 \leq y \leq 1$, and the disc $x^{2}+y^{2} \leq 1, y=1$

