	Dot Products and Work
	00000

Math 213 - The Dot Product

Peter A. Perry

University of Kentucky

August 30, 2019

- * ロ ト * @ ト * 注 ト * 注 / うへぐ

Peter A. Perr

- Access your WebWork account only through Canvas!
- Homework A1 on Section 12.1 is due tonight!
- Applications for an alternate Exam 1 are due **no later than September 4**

Review your schedule and apply for all alternate exams at once by using the Google Form linked from Canvas or the course home page.

A B > A B

Unit I: Geometry and Motion in Space

- 12.1 Lecture 1: Three-Dimensional Coordinate Systems
- 12.2 Lecture 2: Vectors in the Plane and in Space
- 12.3 Lecture 3: The Dot Product
- 12.4 Lecture 4: The Cross Product
- 12.5 Lecture 5: Equations of Lines
- 12.5 Lecture 6: Equations of Planes
- 12.6 Lecture 7: Surfaces in Space
- 13.1 Lecture 8: Vector Functions and Space Curves
- 13.2 Lecture 9 Derivatives and Integrals of Vector Functions Lecture 10: Exam I Review

University of Kentucky

- Know how to compute the dot product **a** · **b** of two vectors and understand its geometric interpretation
- Understand *direction angles* and *direction cosines* of a vector and how to compute them using dot products
- Understand what the *projection* of one vector onto another vector is
- Understand the connection between dot products and the work done by a given force **F** through a displacement **D**

The D	ot Product	Direction Angles, Direction Cosines O	Projections	00	Dot Products and Worl	k 00000
The	Dot Pro	oduct				
		on If $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} =$ number $\mathbf{a} \cdot \mathbf{b}$ given by	$\langle b_1, b_2, b_3 \rangle$, the	dot produ	act of a and	
		$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + b_2 b_1$	$a_2b_2 + a_3b_3$			

There's a similar definition for the dot product of vectors in two dimensions. The dot product is also called the *scalar product* of two vectors.

► < Ξ > <</p>

Find $\mathbf{a} \cdot \mathbf{b}$ if ... **1** $\mathbf{a} = \langle 1, 1 \rangle$ and $\mathbf{b} = \langle 1, -1 \rangle$ **2** $\mathbf{a} = \mathbf{b} = \left\langle \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right\rangle$ **3** $\mathbf{a} = 3\mathbf{i} - 4\mathbf{j} + \mathbf{k}, \mathbf{b} = 2\mathbf{i} + 5\mathbf{j}$ **4** $\mathbf{a} = 2\mathbf{i} + 5\mathbf{j}$ and $\mathbf{b} = 3\mathbf{i} - 4\mathbf{j}$ **5** $\mathbf{a} = 2\mathbf{i} - 3\mathbf{j} + 4\mathbf{k}$ and $\mathbf{b} = \mathbf{k}$

Peter A. Perry

Properties of the Dot Product

Fill in the blanks:

$$\mathbf{a} \cdot \mathbf{a} = \underline{\qquad} \qquad \mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$$
$$\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \underline{\qquad} \qquad (c\mathbf{a}) \cdot \mathbf{b} = \underline{\qquad} (\mathbf{a} \cdot \mathbf{b}) = \mathbf{a} \cdot (\underline{\qquad})$$
$$\mathbf{0} \cdot \mathbf{a} = \underline{\qquad}$$

How can you check these identities?

Peter A. Perry

University of Kentucky

∃ > ∢

The Law of Cosines

Recall from trigonometry:

$$c^2 = a^2 + b^2 - 2ab\cos\theta$$

where

$$\theta = m \angle ACB$$

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Peter A. Perr

Math 213 - The Dot Product

[] ▶] 팀 ∽ � ♥ University of Kentucky

(문) (문

The Most Important Slide in this Lecture

Theorem If θ is the angle between the vectors **a** and **b**, then

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos(\theta)$$

You can prove that this is true using the law of cosines to the triangle OAB:

Why The Last Slide Was Important

• To find the angle between two nonzero vectors **a** and **b**, compute

$$\cos\theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}$$

• Two nonzero vectors are orthogonal if and only if $\mathbf{a} \cdot \mathbf{b} = 0$

- **1** Are the vectors $\mathbf{a} = \langle 9, 3 \rangle$ and $\mathbf{b} = \langle -2, 6 \rangle$ parallel, orthogonal, or neither?
- **2** Find the three angles of the triangle with vertices P(2,0), Q(0,3), R(3,4)
- **③** Is the triangle with vertices *P*(1, −3, −2), *Q*(2, 0, −4), *R*(6, −2, −5) a right triangle?

< □ > < 同 > < 回 > < 回 > .

Why Two Slides Ago Was Important

• Two nonzero vectors are orthogonal if and only if $\mathbf{a} \cdot \mathbf{b} = 0$

3. Is the triangle with vertices *P*(1, −3, −2), *Q*(2, 0, −4), *R*(6, −2, −5) a right triangle?

The Dot Product		Dot Products and Work
000000		00000
Puzzlers		

At left is an equilateral triangle made of of vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} . If \mathbf{u} is a unit vector, find $\mathbf{u} \cdot \mathbf{v}$ and $\mathbf{u} \cdot \mathbf{w}$

Find the acute angle between the lines

$$2x - y = 3$$
$$3x + y = 7$$

Peter A. Perr

The Dot Product			
000000			00000
Puzzlers			

At left is an equilateral triangle made of of vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} . If \mathbf{u} is a unit vector, find $\mathbf{u} \cdot \mathbf{v}$ and $\mathbf{u} \cdot \mathbf{w}$

Find the acute angle between the lines

$$2x - y = 3$$
$$3x + y = 7$$

< E

Peter A. Perr

The *direction angles* associated to a vector \mathbf{v} are shown in the picture at left. They can be computed by

Peter A. Perr

The *direction angles* associated to a vector \mathbf{v} are shown in the picture at left. They can be computed by

$$\cos\alpha=\frac{\mathbf{v}\cdot\mathbf{i}}{|\mathbf{v}|},$$

University of Kentucky

The *direction angles* associated to a vector \mathbf{v} are shown in the picture at left. They can be computed by

$$\cos \alpha = \frac{\mathbf{v} \cdot \mathbf{i}}{|\mathbf{v}|}, \qquad \cos \beta = \frac{\mathbf{v} \cdot \mathbf{j}}{|\mathbf{v}|}$$

Peter A. Perr

The *direction angles* associated to a vector \mathbf{v} are shown in the picture at left. They can be computed by

$$\cos \alpha = \frac{\mathbf{v} \cdot \mathbf{i}}{|\mathbf{v}|}, \qquad \cos \beta = \frac{\mathbf{v} \cdot \mathbf{j}}{|\mathbf{v}|}$$

 $\cos \gamma = \frac{\mathbf{v} \cdot \mathbf{k}}{|\mathbf{v}|}$

The *direction angles* associated to a vector \mathbf{v} are shown in the picture at left. They can be computed by

$$\cos \alpha = \frac{\mathbf{v} \cdot \mathbf{i}}{|\mathbf{v}|}, \qquad \cos \beta = \frac{\mathbf{v} \cdot \mathbf{j}}{|\mathbf{v}|}$$
$$\cos \gamma = \frac{\mathbf{v} \cdot \mathbf{k}}{|\mathbf{v}|}$$

The numbers $\cos \alpha$, $\cos \beta$, and $\cos \gamma$ are called the *direction cosines* of **v**.

Peter A. Perry

The *direction angles* associated to a vector \mathbf{v} are shown in the picture at left. They can be computed by

$$\cos \alpha = \frac{\mathbf{v} \cdot \mathbf{i}}{|\mathbf{v}|}, \qquad \cos \beta = \frac{\mathbf{v} \cdot \mathbf{j}}{|\mathbf{v}|}$$
$$\cos \gamma = \frac{\mathbf{v} \cdot \mathbf{k}}{|\mathbf{v}|}$$

The numbers $\cos \alpha$, $\cos \beta$, and $\cos \gamma$ are called the *direction cosines* of **v**.

- **1** Find the direction cosines of the vector $\langle 2, 1, 2 \rangle$
- 2 Find the direction cosines of the vector $\langle c, c, c \rangle$ if c > 0.

	Projections		Dot Products and Work
		00	00000
Projections			

Finally we can use the dot product to find the *vector projection* of a vector **b** onto another vector **a**, denoted

Peter A. Perr

Projections

Finally we can use the dot product to find the *vector projection* of a vector **b** onto another vector **a**, denoted

proj_a b

To the left is a visual of what the projection means.

Peter A. Perry

Projections

Finally we can use the dot product to find the *vector projection* of a vector **b** onto another vector **a**, denoted

proj_a b

To the left is a visual of what the projection means.

The projection of **b** onto **a** is a vector in the direction of **a** having (signed) magnitude

 $\operatorname{comp}_{\mathbf{a}} \mathbf{b} = \mathbf{b} \cdot \frac{\mathbf{a}}{|\mathbf{a}|} = |\mathbf{b}| \cos \theta$

University of Kentucky

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Projections

Finally we can use the dot product to find the *vector projection* of a vector **b** onto another vector **a**, denoted

proj_a b

To the left is a visual of what the projection means.

The projection of **b** onto **a** is a vector in the direction of **a** having (signed) magnitude

 $\operatorname{comp}_{\mathbf{a}} \mathbf{b} = \mathbf{b} \cdot \frac{\mathbf{a}}{|\mathbf{a}|} = |\mathbf{b}| \cos \theta$

So,

$$\operatorname{proj}_{\mathbf{a}} \mathbf{b} = \left(\mathbf{b} \cdot \frac{\mathbf{a}}{|\mathbf{a}|}\right) \frac{\mathbf{a}}{|\mathbf{a}|} = \left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^2}\right) \mathbf{a}$$

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

University of Kentucky

	Projections		Dot Products and Work
		00	00000

Projection Puzzler

Recall the scalar projection

$$\operatorname{comp}_{\mathbf{a}} \mathbf{b} = \mathbf{b} \cdot \frac{\mathbf{a}}{|\mathbf{a}|} = |\mathbf{b}| \cos \theta$$

and the vector projection

$$\operatorname{proj}_{\mathbf{a}} \mathbf{b} = \left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^2}\right) \mathbf{a}$$

- 1 Find the scalar and vector projections of $\mathbf{b} = \langle 4, 6 \rangle$ onto $\mathbf{a} = \langle -5, 12 \rangle$
- 2 In the second figure shown, is the scalar projection of b onto a a positive number, or a negative number?

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

		Dot Products and Work	
			00000

Dot Products and Work

The work done by a force F acting through a displacement D is

 $W = \mathbf{F} \cdot \mathbf{D}$

Unit Reminders:

Quantity	Туре	MKS Unit	FPS Unit
Force	Vector	Newton	Pound
Displacement	Vector	Meter	Foot
Work	Scalar	Joule (Nt-m)	Foot-pound

A boat sails south with the help of a wind blowing in the direction S 36° E with magnitude 400 lb. Find the work done by the wind as the boat moves 120 ft.

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

For Next Time: Determinants

Next time we'll define the *cross product* of two vectors, and we'll need to know how to compute the *determinant* of a 2×2 or 3×3 matrix.

A determinant of order 2 is defined by

$$\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = a_1 b_2 - a_2 b_1$$

Find the following determinants:

$$\begin{vmatrix} 2 & 1 \\ 4 & -6 \end{vmatrix}, \begin{vmatrix} 4 & -6 \\ 2 & 1 \end{vmatrix}, \begin{vmatrix} 1 & 2 \\ 2 & 4 \end{vmatrix}$$

Peter A. Perry

• • = • • =

Determinants, Continued

A determinant of order 3 is defined by

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} - a_2 \begin{vmatrix} b_1 & c_3 \\ c_1 & c_3 \end{vmatrix} + a_3 \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix}$$

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

For an illustration of this formula, see this Khan Academy Video

For a shortcut method that many students like, see this Khan Academy Video

	Dot Products and Work
	00000

Lecture Review

- We defined the *dot product* of two vectors and found its geometric meaning
- We defined *direction angles* and *direction cosines* and computed them using dot products
- We used the dot product to compute the projection of one vector onto another
- We computed the work done by a force **F** through a displacement **D** using dot products

		Dot Products and Work
		00000

Homework

- Review section 12.3
- Complete homework A1 due Friday; begin work on homework A2
- Review or learn how to compute the determinant of a 3 × 3 matrix
- Read and study section 12.4 for next Wednesday's lecture
- Enjoy Labor Day weekend!