# Math 213 - The Dot Product 

Peter A. Perry<br>University of Kentucky<br>August 30, 2019

## Reminders

- Access your WebWork account only through Canvas!
- Homework A1 on Section 12.1 is due tonight!
- Applications for an alternate Exam 1 are due no later than September 4

Review your schedule and apply for all alternate exams at once by using the Google Form linked from Canvas or the course home page.

## Unit I: Geometry and Motion in Space

12.1 Lecture 1: Three-Dimensional Coordinate Systems
12.2 Lecture 2: Vectors in the Plane and in Space
12.3 Lecture 3:The Dot Product
12.4 Lecture 4:The Cross Product
12.5 Lecture 5: Equations of Lines
12.5 Lecture 6: Equations of Planes
12.6 Lecture 7: Surfaces in Space
13.1 Lecture 8: Vector Functions and Space Curves
13.2 Lecture 9 Derivatives and Integrals of Vector Functions Lecture 10: Exam I Review

## Learning Goals

- Know how to compute the dot product $\mathbf{a} \cdot \mathbf{b}$ of two vectors and understand its geometric interpretation
- Understand direction angles and direction cosines of a vector and how to compute them using dot products
- Understand what the projection of one vector onto another vector is
- Understand the connection between dot products and the work done by a given force $\mathbf{F}$ through a displacement $\mathbf{D}$


## The Dot Product

Definition If $\mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\mathbf{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$, the dot product of $\mathbf{a}$ and $\mathbf{b}$ is the number $\mathbf{a} \cdot \mathbf{b}$ given by

$$
\mathbf{a} \cdot \mathbf{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}
$$

There's a similar definition for the dot product of vectors in two dimensions. The dot product is also called the scalar product of two vectors.

Find $\mathbf{a} \cdot \mathbf{b}$ if...
(1) $\mathbf{a}=\langle 1,1\rangle$ and $\mathbf{b}=\langle 1,-1\rangle$
(2) $\mathbf{a}=\mathbf{b}=\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle$
(3) $\mathbf{a}=3 \mathbf{i}-4 \mathbf{j}+\mathbf{k}, \mathbf{b}=2 \mathbf{i}+5 \mathbf{j}$
(4) $\mathbf{a}=2 \mathbf{i}+5 \mathbf{j}$ and $\mathbf{b}=3 \mathbf{i}-4 \mathbf{j}$
(5) $\mathbf{a}=2 \mathbf{i}-3 \mathbf{j}+4 \mathbf{k}$ and $\mathbf{b}=\mathbf{k}$

## Properties of the Dot Product

Fill in the blanks:

$$
\begin{aligned}
\mathbf{a} \cdot \mathbf{a} & = \\
\mathbf{a} \cdot(\mathbf{b}+\mathbf{c}) & =
\end{aligned}
$$

$$
\mathbf{a} \cdot \mathbf{b}=\mathbf{b} \cdot \mathbf{a}
$$

$$
(c \mathbf{a}) \cdot \mathbf{b}={ }_{-}(\mathbf{a} \cdot \mathbf{b})=\mathbf{a} \cdot(\ldots)
$$

How can you check these identities?

## The Law of Cosines



Recall from trigonometry:

$$
c^{2}=a^{2}+b^{2}-2 a b \cos \theta
$$

where

$$
\theta=m \angle A C B
$$

## The Most Important Slide in this Lecture

Theorem If $\theta$ is the angle between the vectors $\mathbf{a}$ and $\mathbf{b}$, then

$$
\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos (\theta)
$$

You can prove that this is true using the law of cosines to the triangle $O A B$ :


$$
\begin{aligned}
& \qquad|A B|^{2}=|O A|^{2}+|O B|^{2}-2|O A||O B| \cos \theta \\
& \text { so } \\
& |\mathbf{a}-\mathbf{b}|^{2}=|\mathbf{a}|^{2}+|\mathbf{b}|^{2}-2|\mathbf{a}||\mathbf{b}| \cos \theta \\
& \text { Now express }|\mathbf{a}-\mathbf{b}|^{2} \text { using the dot product. }
\end{aligned}
$$

## Why The Last Slide Was Important

$$
\underbrace{\mathbf{a} \cdot \mathbf{b}}_{\text {the dot product }}=\underbrace{|\mathbf{a}||\mathbf{b}| \cos \theta}_{\text {its geometric meaning }}
$$

- To find the angle between two nonzero vectors $\mathbf{a}$ and $\mathbf{b}$, compute

$$
\cos \theta=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}
$$

- Two nonzero vectors are orthogonal if and only if $\mathbf{a} \cdot \mathbf{b}=0$
(1) Are the vectors $\mathbf{a}=\langle 9,3\rangle$ and $\mathbf{b}=\langle-2,6\rangle$ parallel, orthogonal, or neither?
(2) Find the three angles of the triangle with vertices $P(2,0), Q(0,3), R(3,4)$
(3) Is the triangle with vertices $P(1,-3,-2), Q(2,0,-4), R(6,-2,-5)$ a right triangle?


## Why Two Slides Ago Was Important

- Two nonzero vectors are orthogonal if and only if $\mathbf{a} \cdot \mathbf{b}=0$

3. Is the triangle with vertices $P(1,-3,-2), Q(2,0,-4), R(6,-2,-5)$ a right triangle?


## Puzzlers



At left is an equilateral triangle made of of vectors $\mathbf{u}, \mathbf{v}$, and $\mathbf{w}$. If $\mathbf{u}$ is a unit vector, find $\mathbf{u} \cdot \mathbf{v}$ and $\mathbf{u} \cdot \mathbf{w}$


Find the acute angle between the lines

$$
\begin{aligned}
& 2 x-y=3 \\
& 3 x+y=7
\end{aligned}
$$

## Puzzlers



At left is an equilateral triangle made of of vectors $\mathbf{u}, \mathbf{v}$, and $\mathbf{w}$. If $\mathbf{u}$ is a unit vector, find $\mathbf{u} \cdot \mathbf{v}$ and $\mathbf{u} \cdot \mathbf{w}$


Find the acute angle between the lines

$$
\begin{aligned}
& 2 x-y=3 \\
& 3 x+y=7
\end{aligned}
$$

## Direction Angles and Direction Cosines

The direction angles associated to a vector $\mathbf{v}$ are shown in the picture at left. They can be computed by

## Direction Angles and Direction Cosines

The direction angles associated to a vector $\mathbf{v}$ are shown in the picture at left. They can be computed by

$$
\cos \alpha=\frac{\mathbf{v} \cdot \mathbf{i}}{|\mathbf{v}|}
$$

## Direction Angles and Direction Cosines

The direction angles associated to a vector $\mathbf{v}$ are shown in the picture at left. They can be computed by

$$
\cos \alpha=\frac{\mathbf{v} \cdot \mathbf{i}}{|\mathbf{v}|}, \quad \cos \beta=\frac{\mathbf{v} \cdot \mathbf{j}}{|\mathbf{v}|}
$$

## Direction Angles and Direction Cosines

The direction angles associated to a vector $\mathbf{v}$ are shown in the picture at left. They can be computed by

$$
\begin{aligned}
\cos \alpha= & \frac{\mathbf{v} \cdot \mathbf{i}}{|\mathbf{v}|}, \quad \cos \beta=\frac{\mathbf{v} \cdot \mathbf{j}}{|\mathbf{v}|} \\
& \cos \gamma=\frac{\mathbf{v} \cdot \mathbf{k}}{|\mathbf{v}|}
\end{aligned}
$$

## Direction Angles and Direction Cosines

The direction angles associated to a vector $\mathbf{v}$ are shown in the picture at left. They can be computed by

$$
\begin{aligned}
\cos \alpha= & \frac{\mathbf{v} \cdot \mathbf{i}}{|\mathbf{v}|}, \quad \cos \beta=\frac{\mathbf{v} \cdot \mathbf{j}}{|\mathbf{v}|} \\
& \cos \gamma=\frac{\mathbf{v} \cdot \mathbf{k}}{|\mathbf{v}|}
\end{aligned}
$$

The numbers $\cos \alpha, \cos \beta$, and $\cos \gamma$ are called the direction cosines of $\mathbf{v}$.

## Direction Angles and Direction Cosines



The direction angles associated to a vector $\mathbf{v}$ are shown in the picture at left. They can be computed by

$$
\begin{aligned}
\cos \alpha= & \frac{\mathbf{v} \cdot \mathbf{i}}{|\mathbf{v}|}, \quad \cos \beta=\frac{\mathbf{v} \cdot \mathbf{j}}{|\mathbf{v}|} \\
& \cos \gamma=\frac{\mathbf{v} \cdot \mathbf{k}}{|\mathbf{v}|}
\end{aligned}
$$

The numbers $\cos \alpha, \cos \beta$, and $\cos \gamma$ are called the direction cosines of $\mathbf{v}$.
(1) Find the direction cosines of the vector $\langle 2,1,2\rangle$
2. Find the direction cosines of the vector $\langle c, c, c\rangle$ if $c>0$.

## Projections



Finally we can use the dot product to find the vector projection of a vector $\mathbf{b}$ onto another vector a, denoted

$$
\operatorname{proj}_{\mathbf{a}} \mathbf{b}
$$

## Projections



Finally we can use the dot product to find the vector projection of a vector $\mathbf{b}$ onto another vector a, denoted

$$
\operatorname{proj}_{\mathbf{a}} \mathbf{b}
$$

To the left is a visual of what the projection means.

## Projections



Finally we can use the dot product to find the vector projection of a vector $\mathbf{b}$ onto another vector a, denoted

$$
\operatorname{proj}_{\mathbf{a}} \mathbf{b}
$$

To the left is a visual of what the projection means.

The projection of $\mathbf{b}$ onto $\mathbf{a}$ is a vector in the direction of a having (signed) magnitude

$$
\operatorname{comp}_{\mathbf{a}} \mathbf{b}=\mathbf{b} \cdot \frac{\mathbf{a}}{|\mathbf{a}|}=|\mathbf{b}| \cos \theta
$$

## Projections



Finally we can use the dot product to find the vector projection of a vector $\mathbf{b}$ onto another vector a, denoted

$$
\operatorname{proj}_{\mathbf{a}} \mathbf{b}
$$

To the left is a visual of what the projection means.

The projection of $\mathbf{b}$ onto $\mathbf{a}$ is a vector in the direction of a having (signed) magnitude

$$
\operatorname{comp}_{\mathbf{a}} \mathbf{b}=\mathbf{b} \cdot \frac{\mathbf{a}}{|\mathbf{a}|}=|\mathbf{b}| \cos \theta
$$

So,

$$
\operatorname{proj}_{\mathbf{a}} \mathbf{b}=\left(\mathbf{b} \cdot \frac{\mathbf{a}}{|\mathbf{a}|}\right) \frac{\mathbf{a}}{|\mathbf{a}|}=\left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^{2}}\right) \mathbf{a}
$$

## Projection Puzzler

$\mathbf{a}=\langle-5,12\rangle$


Recall the scalar projection

$$
\operatorname{comp}_{\mathbf{a}} \mathbf{b}=\mathbf{b} \cdot \frac{\mathbf{a}}{|\mathbf{a}|}=|\mathbf{b}| \cos \theta
$$

and the vector projection

$$
\operatorname{proj}_{\mathbf{a}} \mathbf{b}=\left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^{2}}\right) \mathbf{a}
$$

(1) Find the scalar and vector projections of $\mathbf{b}=\langle 4,6\rangle$ onto $\mathbf{a}=\langle-5,12\rangle$
(2) In the second figure shown, is the scalar projection of $\mathbf{b}$ onto $\mathbf{a}$ a positive number, or a negative number?

## Dot Products and Work

The work done by a force $\mathbf{F}$ acting through a displacement $\mathbf{D}$ is

$$
W=\mathbf{F} \cdot \mathbf{D}
$$

Unit Reminders:

| Quantity | Type | MKS Unit | FPS Unit |
| :--- | :--- | :--- | :--- |
| Force | Vector | Newton | Pound |
| Displacement | Vector | Meter | Foot |
| Work | Scalar | Joule (Nt-m) | Foot-pound |

A boat sails south with the help of a wind blowing in the direction $\mathrm{S} 36^{\circ} \mathrm{E}$ with magnitude 400 lb . Find the work done by the wind as the boat moves 120 ft .

## For Next Time: Determinants

Next time we'll define the cross product of two vectors, and we'll need to know how to compute the determinant of a $2 \times 2$ or $3 \times 3$ matrix.

A determinant of order 2 is defined by

$$
\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right|=a_{1} b_{2}-a_{2} b_{1}
$$

Find the following determinants:

$$
\left|\begin{array}{cc}
2 & 1 \\
4 & -6
\end{array}\right|, \quad\left|\begin{array}{cc}
4 & -6 \\
2 & 1
\end{array}\right|, \quad\left|\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right|
$$

## Determinants, Continued

A determinant of order 3 is defined by

$$
\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|=a_{1}\left|\begin{array}{ll}
b_{2} & b_{3} \\
c_{2} & c_{3}
\end{array}\right|-a_{2}\left|\begin{array}{ll}
b_{1} & c_{3} \\
c_{1} & c_{3}
\end{array}\right|+a_{3}\left|\begin{array}{ll}
b_{1} & b_{2} \\
c_{1} & c_{2}
\end{array}\right|
$$

For an illustration of this formula, see this Khan Academy Video
For a shortcut method that many students like, see this Khan Academy Video

## Lecture Review

- We defined the dot product of two vectors and found its geometric meaning
- We defined direction angles and direction cosines and computed them using dot products
- We used the dot product to compute the projection of one vector onto another
- We computed the work done by a force $\mathbf{F}$ through a displacement $\mathbf{D}$ using dot products


## Homework

- Review section 12.3
- Complete homework A1 due Friday; begin work on homework A2
- Review or learn how to compute the determinant of a $3 \times 3$ matrix
- Read and study section 12.4 for next Wednesday's lecture
- Enjoy Labor Day weekend!

