Math 213 - Semester Review - I

Peter A. Perry

University of Kentucky

December 9, 2019

Reminders

- Homework D5 (16.9, the Divergence Theorem) is due Wednesday night
- There will be a drop-in review session for the final exam on Wednesday, December 18, 3:30-5:30 PM, CB 106.
- Your final exam is Thursday, December 19 at 6:00 PM. Room assignments are the same as for Exams I - III
- On your final exam:
- The multiple choice questions will be 50% from Units I - III and 50% from unit IV.
- All free response questions will be from unit IV. Since these questions typically involve integrals, they will also test material from unit III

Unit IV: Vector Calculus

Fundamental Theorem for Line Integrals
Green's Theorem
Curl and Divergence
Parametric Surfaces and their Areas
Surface Integrals
Stokes' Theorem, I
Stokes' Theorem, II
The Divergence Theorem
Review, I
Review, II
Review, III

Goals of the Day

Calculus is about functions, derivatives, integrals, and "fundamental theorems" that relate them. Today we will review all of the

- New functions
- New derivatives
- New integrals
- New theorems
that we've learned about in this course.

New Functions

- Vector functions $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle$ for space curves, such as

$$
\mathbf{r}(t)=\langle\cos t, \sin t, t\rangle
$$

- Vector functions $\mathbf{r}(u, v)=x(u, v) \mathbf{i}+y(u, v) \mathbf{j}+z(u, v) \mathbf{k}$ for surfaces, such as

$$
\mathbf{r}(u, v)=\langle u \cos v, u \sin v, v\rangle
$$

- Functions of several variables $f(x, y)$ and $g(x, y, z)$ such as

$$
f(x, y)=x^{2}+y^{2}, \quad g(x, y, z)=e^{x y z}
$$

- Transformations $(x(u, v), y(u, v))$ and $(x(u, v, w), y(u, v, w), z(u, v, w))$ such as

$$
x(u, v)=u^{2}-v^{2}, \quad y(u, v)=2 u v
$$

- Vector fields

$$
\mathbf{F}(x, y, z)=P(x, y, z) \mathbf{i}+Q(x, y, z) \mathbf{j}+R(x, y, z) \mathbf{k}
$$

New Derivatives - Vector Functions

- The tangent vector to a space curve:

$$
\begin{gathered}
\mathbf{r}^{\prime}(t)=\left\langle x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right\rangle \\
d s=\left|\mathbf{r}^{\prime}(t)\right| d t, \quad d \mathbf{r}=\mathbf{r}^{\prime}(t) d t
\end{gathered}
$$

- The tangent vectors to a parameterized surface

$$
\mathbf{r}_{u}(u, v)=\frac{\partial x}{\partial u} \mathbf{i}+\frac{\partial y}{\partial u} \mathbf{j}+\frac{\partial z}{\partial u} \mathbf{k}, \quad \mathbf{r}_{v}(u, v)=\frac{\partial x}{\partial v} \mathbf{i}+\frac{\partial y}{\partial v} \mathbf{j}+\frac{\partial z}{\partial v} \mathbf{k}
$$

and the element of area

$$
d S=\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| d u d v, \quad d \mathbf{S}=\left(\mathbf{r}_{u} \times \mathbf{r}_{v}\right) d u d v
$$

New Derivatives - Functions of Several Variables

- The gradient of a function of a function of two variables

$$
\nabla f(x, y)=\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}
$$

(greatest change, directional derivatives, critical points)

- The Hessian of a function of two variables

$$
\operatorname{Hess}(f)=\left(\begin{array}{cc}
\frac{\partial^{2} f}{\partial x^{2}} & \frac{\partial^{2} f}{\partial x \partial y} \\
\frac{\partial^{2} f}{\partial y \partial x} & \frac{\partial^{2} f}{\partial y^{2}}
\end{array}\right)
$$

(determine whether critical points are local extrema or saddle points)

New Derivatives - Transformations

- The Jacobian matrix of a transformation $(x(u, v), y(u, v))$

$$
\left(\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right)
$$

(Area change from $u v$ plane to $x y$ plane)

- The Jacobian of a transformation $x(u, v, w), y(u, v, w), z(u, v, w)$

$$
\left(\begin{array}{lll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\
\frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w}
\end{array}\right)
$$

(Volume change from $u v w$ space to $x y z$ space)

New Derivatives - Vector Fields

A vector field is a function

$$
\mathbf{F}(x, y, z)=P(x, y, z) \mathbf{i}+Q(x, y, z) \mathbf{j}+R(x, y, z) \mathbf{k}
$$

so there are nine derivatives to choose from:

$$
\left(\begin{array}{ccc}
\frac{\partial P}{\partial x} & \frac{\partial P}{\partial y} & \frac{\partial P}{\partial z} \\
\frac{\partial Q}{\partial x} & \frac{\partial Q}{\partial y} & \frac{\partial Q}{\partial z} \\
\frac{\partial R}{\partial x} & \frac{\partial R}{\partial y} & \frac{\partial R}{\partial z}
\end{array}\right)
$$

Experience shows that there are two important ones, a scalar (the divergence) and a vector (the curl).

The Divergence

$$
\begin{gathered}
\mathbf{F}(x, y, z)=P(x, y, z) \mathbf{i}+Q(x, y, z) \mathbf{j}+R(x, y, z) \mathbf{k} \\
\left(\begin{array}{ccc}
\frac{\partial P}{\partial x} & \frac{\partial P}{\partial y} & \frac{\partial P}{\partial z} \\
\frac{\partial Q}{\partial x} & \frac{\partial Q}{\partial y} & \frac{\partial Q}{\partial z} \\
\frac{\partial R}{\partial x} & \frac{\partial R}{\partial y} & \frac{\partial R}{\partial z}
\end{array}\right) \\
\operatorname{div} \mathbf{F}=\nabla \cdot \mathbf{F}=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}
\end{gathered}
$$

The divergence is a scalar which measures net flux of \mathbf{F} per unit volume

The Curl

$$
\begin{gathered}
\mathbf{F}(x, y, z)=P(x, y, z) \mathbf{i}+Q(x, y, z) \mathbf{j}+R(x, y, z) \mathbf{k} \\
\left(\begin{array}{ccc}
\frac{\partial P}{\partial x} & \frac{\partial P}{\partial y} & \frac{\partial P}{\partial z} \\
\frac{\partial Q}{\partial x} & \frac{\partial Q}{\partial y} & \frac{\partial Q}{\partial z} \\
\frac{\partial R}{\partial x} & \frac{\partial R}{\partial y} & \frac{\partial R}{\partial z}
\end{array}\right) \\
\operatorname{curl} \mathbf{F}=\nabla \times \mathbf{F}=\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\right) \mathbf{i}+\left(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}\right) \mathbf{j}+\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \mathbf{k}
\end{gathered}
$$

The curl is a vector. The circulation of \mathbf{F} around the boundary of an oriented area $d \mathbf{S}$ is $\operatorname{curl} \mathbf{F} \cdot d \mathbf{S}$

New Integrals - Double Integrals

If $f(x, y)$ is a function of two variables defined on a region D in the $x y$ plane, the double integral of f over D is $\iint_{D} f(x, y) d A$. It can be computed in the following ways:

- If $D=[a, b] \times[c, d]$

$$
\iint_{D} f(x, y) d A=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x
$$

- If $D=\left\{(x, y): a \leq x \leq b, g_{1}(x) \leq y \leq g_{2}(y)\right\}$ then

$$
\iint_{D} f(x, y) d A=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x
$$

- If $D=\{(r, \theta): \alpha \leq \theta \leq \beta, c \leq r \leq d\}$ then

$$
\iint_{D} f(x, y) d A=\int_{\alpha}^{\beta} \int_{c}^{d} f(r \cos \theta, r \sin \theta) r d r d \theta
$$

New Integrals - Triple Integrals

If $f(x, y, z)$ is a function of three variables defined on a region E of $x y z$ space, the triple integral of f over E is $\iiint_{E} f(x, y, z) d V$. It can be computed in the following ways (among others!):

- If $E=\{(x, y, z): a \leq x \leq b, c \leq y \leq d, r \leq z \leq s\}$ then

$$
\iiint_{E} f(x, y, z) d V=\int_{a}^{b} \int_{c}^{d} \int_{r}^{s} f(x, y, z) d z d y d x
$$

- If $E=\left\{(x, y, z):(x, y) \in D\right.$ and $\left.g_{1}(x, y) \leq z \leq g_{2}(x, y)\right\}$ then

$$
\iiint_{E} f(x, y, z) d V=\iint_{D}\left(\int_{g_{1}(x, y)}^{g_{2}(x, y)} f(x, y, z) d z\right) d A
$$

- If $E=\left\{(\rho, \theta, \phi): \alpha \leq \theta \leq \beta, \phi_{1} \leq \phi \leq \phi_{2}, a \leq \rho \leq b\right\}$ then

$$
\begin{aligned}
& \iint_{E} f(x, y, z) d V= \\
& \quad \int_{\alpha}^{\beta} \int_{\phi_{1}}^{\phi_{2}} \int_{a}^{b} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^{2} \sin \phi d \rho d \phi d \theta
\end{aligned}
$$

New Integrals - Line Integrals

If the space curve C is parameterized by $\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}, a \leq t \leq b$, then:

- The line integral of a scalar function $f(x, y, z)$ over C, denoted $\int_{C} f d s$, is given by

$$
\int_{a}^{b} f(x(t), y(t), z(t))\left|\mathbf{r}^{\prime}(t)\right| d t
$$

- The line integral of a vector function $\mathbf{F}(x, y, z)$ over C, denotes $\int_{C} \mathbf{F} \cdot d r$, is given by

$$
\int_{a}^{b} \mathbf{F}(x(t), y(t), z(t)) \cdot \mathbf{r}^{\prime}(t) d t
$$

- We also have

$$
\begin{aligned}
\int_{C} f(x, y, z) d x & =\int_{a}^{b} f(x(t), y(t), z(t)) x^{\prime}(t) d t \\
\int_{C} f(x, y, z) d y & =\int_{a}^{b} f(x(t), y(t), z(t)) y^{\prime}(t) d t \\
\int_{C} f(x, y, z) d z & =\int_{a}^{b} f(x(t), y(t), z(t)) z^{\prime}(t) d t
\end{aligned}
$$

New Integrals - Surface Integrals

If S is a surface parameterized by the vector function

$$
\mathbf{r}(u, v)=x(u, v) \mathbf{i}+y(u, v) \mathbf{j}+z(u, v) \mathbf{k}
$$

where u, v run over a domain D in the $u v$ plane:

- The surface integral of a scalar function $f(x, y, z)$, denoted $\iint_{S} f d S$, is given by

$$
\iint_{D} f(x(u, v), y(u, v), z(u, v))\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| d u d v
$$

- The surface integral of a vector function $\mathbf{F}(x, y, z)$, denoted $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, is given by

$$
\iint_{D} \mathbf{F}(x(u, v), y(u, v), z(u, v)) \cdot\left(\mathbf{r}_{u} \times \mathbf{r}_{v}\right) d u d v
$$

You can remember both of these formulas with the shorthand

$$
\begin{aligned}
d S & =\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| d u d v \\
d \mathbf{S} & =\left(\mathbf{r}_{u} \times \mathbf{r}_{v}\right) d u d v
\end{aligned}
$$

Lots of "Fundamental Theorems"

In Calculus I you learned two versions of the Fundamental Theorem:
Fundamental Theorem of Calculus, Part I Suppose that $f(x)$ is continuous on $[a, b]$ and let $F(x)=\int_{a}^{x} f(t) d t$. Then F is differentiable on (a, b) and

$$
F^{\prime}(x)=f(x)
$$

Fundamental Theorem of Calculus, Part II Suppose that F is any antiderivative of f. Then

$$
\begin{gathered}
\int_{a}^{b} f(x) d x=F(b)-F(a) \\
\stackrel{\bullet}{a} \quad \stackrel{\rightharpoonup}{b}
\end{gathered}
$$

In this course we've seen four theorems which reduce integrals "by one dimension": the Fundamental Theorem for Line Integrals, Green's Theorem, Stokes' Theorem, and the Divergence Theorem

The Fundamental Theorem for Line Integrals

Recall that a vector field \mathbf{F} is called conservative if there is a scalar function φ so that $\mathbf{F}=\nabla \varphi$.

Theorem If \mathbf{F} is a conservative vector field, and C is a curve parameterized by $\mathbf{r}(t), a \leq t \leq b$, then

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\varphi(\mathbf{r}(b))-\varphi(\mathbf{r}(a))
$$

Green's Theorem

Recall that a domain D is simply connected if it is connected (any two points of D can be joined by a curve in D) and every simple closed curve in D surrounds only points of D.

Theorem Suppose that D is a simply connected domain and its boundary C is a simple closed curve. Suppose that $\mathbf{F}(x, y)=P(x, y) \mathbf{i}+Q(x, y) \mathbf{j}$ is a vector field and that P and Q have continuous partial derivatives in a neighborhood of D. Then

$$
\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A=\oint_{C} P d x+Q d y
$$

Stokes' Theorem

Recall that a surface S is oriented if there is a continuous choice of unit normal \mathbf{n} at every point of S. The bounding curve C has positive orientation if its direction is consistent with the direction of \mathbf{n} via the right-hand rule.
Theorem Let S be an oriented, piecewise smooth surface that is bounded by a simple closed curve C with positive orientation. Let \mathbf{F} be a vector field whose components have continuous partial derivatives in an open region on \mathbb{R}^{3} that contains S. Then

$$
\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}=\int_{C} \mathbf{F} \cdot d \mathbf{r}
$$

Divergence Theorem

Recall that E is a simple volume if its boundary separates \mathbb{R}^{3} into an "inside" and an "outside."

Theorem Let E be a simple solid region and let S be the boundary surface of E, given with positive (outward) orientation. Let \mathbf{F} be a vector field whose component functions have continuous partial derivatives on an open region that contains E. Then

$$
\iiint_{E} \operatorname{div} \mathbf{F} d V=\iint_{S} \mathbf{F} \cdot d \mathbf{S}
$$

The Unity of (Almost) All Mathematics

Theorem
Statement

FTC

$$
\int_{a}^{b} F^{\prime}(x) d x=F(b)-F(a)
$$

Region
$[a, b]$
$\{a, b\}$

$$
\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A=\oint_{C} \mathbf{F} \cdot d \mathbf{r}
$$

Gauss $\quad \iiint_{E} \operatorname{div} \mathbf{F} d V=\iint_{S} \mathbf{F} \cdot d \mathbf{S} \quad$ Volume $E \quad$ Surface S

Pattern
Green $\quad \iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A=\oint_{C} \mathbf{F} \cdot d \mathbf{r} \quad$ Domain $D \quad$ Curve C
Stokes

$$
\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}=\oint_{C} \mathbf{F} \cdot d \mathbf{r} \quad \text { Surface } S \quad \text { Curve } C
$$

$$
\iiint_{E} \operatorname{div} \mathbf{F} d V=\iint_{S} \mathbf{F} \cdot d \mathbf{S}
$$

$$
\int_{\text {region }} D F=\int_{\text {boundary }} F
$$

