
Learning Goals Leftovers Derivatives Potentials

Math 213 - Semester Review - II

Peter A. Perry

University of Kentucky

December 11, 2019

Peter A. Perry University of Kentucky

Math 213 - Semester Review - II



Learning Goals Leftovers Derivatives Potentials

Reminders

• Homework D5 (16.9, the Divergence Theorem) is due tonight

• There will be a drop-in review session for the final exam on
Wednesday, December 18, 3:30-5:30 PM, CB 106.

• Your final exam is Thursday, December 19 at 6:00 PM. Room
assignments are the same as for Exams I - III

• On your final exam:
• The multiple choice questions will be 50% from Units I - III and

50% from unit IV.
• All free response questions will be from unit IV. Since these

questions typically involve integrals, they will also test material
from unit III
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Unit IV: Vector Calculus

Fundamental Theorem for Line Integrals
Green’s Theorem
Curl and Divergence
Parametric Surfaces and their Areas
Surface Integrals
Stokes’ Theorem, I
Stokes’ Theorem, II
The Divergence Theorem

Review, I
Review, II
Review, III
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Goals of the Day

Last time we talked about integrals – this time we’ll talk about
derivatives. We’ll recall the gradient, the Hessian, the second
derivative test, and the Jacobian.

We won’t discuss, but you should be sure to review:

• Vector algebra, including dot products, cross product, and scalar
triple product

• Equations of lines and planes
• Space curves and their tangents
• Chain rule and implicit differentiation
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Green’s Theorem

If F(x, y) = P(x, y)i + Q(x, y)j and C bounds R with counterclockwise orientation, then∮
C

F · dr =
∫∫

R

(
∂Q
∂x
− ∂P

∂y

)
dA

Remember that F · dr = P(x, y) dx + Q(x, y) dy

Use Green’s Theorem to evaluate ∮
C

x2y dx− xy2 dy

if C is the circle x2 + y2 = 4 with counterclockwise orientation.
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Stokes’ Theorem

If C bounds S (watch orientation!), then∮
C

F · dr =
∫∫

S
curl F · dS

Use Stokes’ Theorem to evaluate
∫∫

S curl F · dS if

F(x, y, z) = x2yzi + yz2j + z3exyk

and S is the part of the sphere x2 + y2 + z2 = 5 above the plane z = 1, oriented
upwards
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The Divergence Theorem

If S bounds E, a simple solid, oriented with outward normal, and F is a vector field
with continuous partial derivatives in a neighborhood of E,∫∫

S
F · dS =

∫∫∫
E

div F dV

Use the divergence theorem to find the
flux of

F(x, y, z) = zi + yj + zxk

across the surface of the tetrahedron
bounded by the coordinate planes and
the plane

x
a
+

y
b
+

z
c
= 1

where a, b, and c are positive numbers.

x y

z

(a, 0, 0)
(0, b, 0)

(0, 0, c)
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Derivatives
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f (x) = x2 + y2

Calculus III is about functions of two (or more)
variables

• The graph of a function

z = f (x, y)

is a surface in xyz space with points
(x, y, f (x, y))

• You can also visualize a function of two
variables through its contour plot

• The derivative of a function of two variables
is the gradient vector

(∇ f )(x, y) =
〈

∂ f
∂x

(x, y),
∂ f
∂y

(x, y)
〉
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Derivatives
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Derivatives
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The Derivative is the Gradient
The gradient vector (∇ f )(a, b):

• Has magnitude equal to the maximum rate of change of f at (a, b)

• Points in the direction of greatest change of f at (a, b)

• Is the zero vector at critical points of f
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The Derivative is the Gradient
The gradient vector (∇ f )(a, b):

• Has magnitude equal to the maximum rate of change of f at (a, b)
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The Derivative is the Gradient

x

y

z

f (x, y) =
√

4− x2 − y2

L(x, y) =
√

2

− 1√
2
(x− 1)− 1√

2
(y− 1)

The gradient vector also gives us a linear approxi-
mation to the function f near (x, y) = (a, b):

L(x, y) = f (a, b)+

∂ f
∂x

(a, b)(x− a) +
∂ f
∂y

(a, b)(y− b)

It may help to think of this formula as

L(x, y) = f (a, b) + (∇ f ) (a, b) · 〈x− a, y− b〉

to compare with

L(x) = f (a) + f ′(a)(x− a)

Peter A. Perry University of Kentucky

Math 213 - Semester Review - II



Learning Goals Leftovers Derivatives Potentials

The Derivative is the Gradient

x

y

z

f (x, y) =
√

4− x2 − y2

L(x, y) =
√

2

− 1√
2
(x− 1)− 1√

2
(y− 1)

The gradient vector also gives us a linear approxi-
mation to the function f near (x, y) = (a, b):

L(x, y) = f (a, b)+

∂ f
∂x

(a, b)(x− a) +
∂ f
∂y

(a, b)(y− b)

It may help to think of this formula as

L(x, y) = f (a, b) + (∇ f ) (a, b) · 〈x− a, y− b〉

to compare with

L(x) = f (a) + f ′(a)(x− a)

Peter A. Perry University of Kentucky

Math 213 - Semester Review - II



Learning Goals Leftovers Derivatives Potentials

The Derivative is the Gradient

x

y

z

f (x, y) =
√

4− x2 − y2

L(x, y) =
√

2

− 1√
2
(x− 1)− 1√

2
(y− 1)

The gradient vector also gives us a linear approxi-
mation to the function f near (x, y) = (a, b):

L(x, y) = f (a, b)+

∂ f
∂x

(a, b)(x− a) +
∂ f
∂y

(a, b)(y− b)

It may help to think of this formula as

L(x, y) = f (a, b) + (∇ f ) (a, b) · 〈x− a, y− b〉

to compare with

L(x) = f (a) + f ′(a)(x− a)

Peter A. Perry University of Kentucky

Math 213 - Semester Review - II



Learning Goals Leftovers Derivatives Potentials

The Second Derivative is a Matrix
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f (x) = xe−x2−y2

If the first derivative is a vector, the second deriva-
tive is a matrix!

(Hess f )(a, b) =


∂2 f
∂x2 (a, b)

∂2 f
∂x∂y

(a, b)

∂2 f
∂y∂x

(a, b)
∂2 f
∂y2 (a, b)


The determinant of the Hessian at a critical point
is:

• Positive at a local extremum
• Negative at a saddle

The second derivative
∂2 f
∂x2 (a, b) is

• Positive at a local minimum of f
• Negative at a local maximum of f
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Maxima and Minima in Calculus I and III
Second Derivative Test - Functions of One Variable

f (x) = x2, f ′′ (0) > 0 f (x) = −x3, f ′′ (0) < 0 f (x) = x3, f ′′ (0) = 0

Second Derivative Test - Functions of Two Variables
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f (x, y) = x2 + y2, D = 4, fxx (0) = 2
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f (x, y) = −(x2 + y2), D = 4,
fxx (0) = −2
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f (x, y) = x2 − y2, D = −4
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Optimization - Critical Points and Boundary Points
To find the absolute maximum and minimum of a function f (x, y) on a domain D:

• Find the interior critical points of f
• Test f at the interior critical points
• Use one-variable optimization to find the maximum and minimum of f on each component

of the boundary
• The largest value of f in this list is its absolute maximum, and the smallest value of f in this

list is its absolute minimum

Example: Optimize the function f (x, y) = x2 − y2 on the domain

D = {(x, y) : x2 + y2 ≤ 1}

x

y

D

−2

−1

0

1

2−2

−1

0

1

2

−4

−2

0

2

4

x y

Peter A. Perry University of Kentucky

Math 213 - Semester Review - II



Learning Goals Leftovers Derivatives Potentials

Optimization - Critical Points and Boundary Points
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∇ f (x, y) = 〈2x,−2y〉
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Optimization - Critical Points and Boundary Points
To find the absolute maximum and minimum of a function f (x, y) on a domain D:
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Optimization - Critical Points and Boundary Points
To find the absolute maximum and minimum of a function f (x, y) on a domain D:

• Find the interior critical points of f
• Test f at the interior critical points
• Use one-variable optimization to find the maximum and minimum of f on each component

of the boundary

• The largest value of f in this list is its absolute maximum, and the smallest value of f in this
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∇ f (x, y) = 〈2x,−2y〉

f (0, 0) = 0

Parameterize circle:

x(t) = cos(t), y(t) = sin(t)
g(t) = cos2 t− sin2 t
g′ (t) = −4 cos(t) sin(t)
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Optimization - Critical Points and Boundary Points
To find the absolute maximum and minimum of a function f (x, y) on a domain D:

• Find the interior critical points of f
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Parameterize circle:

x(t) = cos(t), y(t) = sin(t)
g(t) = cos2 t− sin2 t
g′ (t) = −4 cos(t) sin(t)

g(0) = g(π) = 1
g(π/2) = g(3π/2) = −1
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Gradients, Level Lines, Level Surfaces

The gradient of f (x, y) is perpendicular to level lines

The gradient of f (x, y, z) is perpendicular to level surfaces

Find the equation of the tangent plane to the surface

x2 + 4y2 + z2 = 17

at the point (2, 1, 3).

Idea: This surface is a level surface of the function

f (x, y, z) = x2 + 4y2 + z2
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Transformations and Their Jacobians

The map T(u, v) = (x(u, v), y(u, v) defines a transformation from the uv plane to the xy
plane

Its “derivative” is the Jacobian

∂(x, y)
∂(u, v)

=

∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣∣
The Jacobian enters in the change of variables formula∫∫

R
f (x, y) dx dy =

∫∫
S

f (x(u, v), y(u, v))
∣∣∣∣ ∂(x, y)

∂(u, v)

∣∣∣∣ du dv

if the transformation T maps S to R.

Find the Jacobian of the transformation

x(u, v) = u2 − v2, y(u, v) = 2uv
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Potentials

Remember the Fundamental Theorem for Line Integrals: If F = ∇ f , and C is
parameterized by r(t), a ≤ t ≤ b, then∫

C
F · dr = f (r(b))− f (r(a)).

When is F a gradient vector field? In general, if curl F = 0, then F = ∇ f for some
potential f

FInd the potential for the vector field

F(x, y, z) = sin yi + (x cos y + cos z)j− y sin zk
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