Math 213 - Semester Review - II

Peter A. Perry

University of Kentucky

December 11, 2019

Reminders

- Homework D5 (16.9, the Divergence Theorem) is due tonight
- There will be a drop-in review session for the final exam on Wednesday, December 18, 3:30-5:30 PM, CB 106.
- Your final exam is Thursday, December 19 at 6:00 PM. Room assignments are the same as for Exams I - III
- On your final exam:
- The multiple choice questions will be 50% from Units I - III and 50% from unit IV.
- All free response questions will be from unit IV. Since these questions typically involve integrals, they will also test material from unit III

Unit IV: Vector Calculus

Fundamental Theorem for Line Integrals
Green's Theorem
Curl and Divergence
Parametric Surfaces and their Areas
Surface Integrals
Stokes' Theorem, I
Stokes' Theorem, II
The Divergence Theorem
Review, I
Review, II
Review, III

Goals of the Day

Last time we talked about integrals - this time we'll talk about derivatives. We'll recall the gradient, the Hessian, the second derivative test, and the Jacobian.

We won't discuss, but you should be sure to review:

- Vector algebra, including dot products, cross product, and scalar triple product
- Equations of lines and planes
- Space curves and their tangents
- Chain rule and implicit differentiation

Green's Theorem

If $\mathbf{F}(x, y)=P(x, y) \mathbf{i}+Q(x, y) \mathbf{j}$ and C bounds R with counterclockwise orientation, then

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A
$$

Remember that $\mathbf{F} \cdot d \mathbf{r}=P(x, y) d x+Q(x, y) d y$

Use Green's Theorem to evaluate

$$
\oint_{C} x^{2} y d x-x y^{2} d y
$$

if C is the circle $x^{2}+y^{2}=4$ with counterclockwise orientation.

Stokes' Theorem

If C bounds S (watch orientation!), then

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}
$$

Use Stokes' Theorem to evaluate $\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}$ if

$$
\mathbf{F}(x, y, z)=x^{2} y z \mathbf{i}+y z^{2} \mathbf{j}+z^{3} e^{x y} \mathbf{k}
$$

and S is the part of the sphere $x^{2}+y^{2}+z^{2}=5$ above the plane $z=1$, oriented upwards

The Divergence Theorem

If S bounds E, a simple solid, oriented with outward normal, and \mathbf{F} is a vector field with continuous partial derivatives in a neighborhood of E,

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iiint_{E} \operatorname{div} \mathbf{F} d V
$$

Use the divergence theorem to find the flux of

$$
\mathbf{F}(x, y, z)=z \mathbf{i}+y \mathbf{j}+z x \mathbf{k}
$$

across the surface of the tetrahedron bounded by the coordinate planes and the plane

$$
\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1
$$

where a, b, and c are positive numbers.

Derivatives

Calculus III is about functions of two (or more) variables

Derivatives

Calculus III is about functions of two (or more) variables

- The graph of a function

$$
z=f(x, y)
$$

is a surface in $x y z$ space with points $(x, y, f(x, y))$

Derivatives

Calculus III is about functions of two (or more) variables

- The graph of a function

$$
z=f(x, y)
$$

is a surface in $x y z$ space with points $(x, y, f(x, y))$

- You can also visualize a function of two variables through its contour plot

Derivatives

Calculus III is about functions of two (or more) variables

- The graph of a function

$$
z=f(x, y)
$$

is a surface in $x y z$ space with points $(x, y, f(x, y))$

- You can also visualize a function of two variables through its contour plot
- The derivative of a function of two variables is the gradient vector

$$
(\nabla f)(x, y)=\left\langle\frac{\partial f}{\partial x}(x, y), \frac{\partial f}{\partial y}(x, y)\right\rangle
$$

The Derivative is the Gradient

The gradient vector $(\nabla f)(a, b)$:

- Has magnitude equal to the maximum rate of change of f at (a, b)
- Points in the direction of greatest change of f at (a, b)
- Is the zero vector at critical points of f

$$
f(x)=x e^{-x^{2}-y^{2}}
$$

The Derivative is the Gradient

The gradient vector $(\nabla f)(a, b)$:

- Has magnitude equal to the maximum rate of change of f at (a, b)
- Points in the direction of greatest change of f at (a, b)
- Is the zero vector at critical points of f

The Derivative is the Gradient

The gradient vector also gives us a linear approximation to the function f near $(x, y)=(a, b)$:

$$
f(x, y)=\sqrt{4-x^{2}-y^{2}}
$$

The Derivative is the Gradient

The gradient vector also gives us a linear approximation to the function f near $(x, y)=(a, b)$:

$$
\begin{aligned}
L(x, y)= & f(a, b)+ \\
& \frac{\partial f}{\partial x}(a, b)(x-a)+\frac{\partial f}{\partial y}(a, b)(y-b)
\end{aligned}
$$

$$
f(x, y)=\sqrt{4-x^{2}-y^{2}}
$$

$$
\begin{aligned}
L(x, y) & =\sqrt{2} \\
& -\frac{1}{\sqrt{2}}(x-1)-\frac{1}{\sqrt{2}}(y-1)
\end{aligned}
$$

The Derivative is the Gradient

$$
f(x, y)=\sqrt{4-x^{2}-y^{2}}
$$

$$
\begin{aligned}
L(x, y) & =\sqrt{2} \\
& -\frac{1}{\sqrt{2}}(x-1)-\frac{1}{\sqrt{2}}(y-1)
\end{aligned}
$$

The gradient vector also gives us a linear approximation to the function f near $(x, y)=(a, b)$:

$$
\begin{aligned}
L(x, y)= & f(a, b)+ \\
& \frac{\partial f}{\partial x}(a, b)(x-a)+\frac{\partial f}{\partial y}(a, b)(y-b)
\end{aligned}
$$

It may help to think of this formula as

$$
L(x, y)=f(a, b)+(\nabla f)(a, b) \cdot\langle x-a, y-b\rangle
$$

to compare with

$$
L(x)=f(a)+f^{\prime}(a)(x-a)
$$

The Second Derivative is a Matrix

If the first derivative is a vector, the second derivative is a matrix!

$$
(\text { Hess } f)(a, b)=\left(\begin{array}{ll}
\frac{\partial^{2} f}{\partial x^{2}}(a, b) & \frac{\partial^{2} f}{\partial x \partial y}(a, b) \\
\frac{\partial^{2} f}{\partial y \partial x}(a, b) & \frac{\partial^{2} f}{\partial y^{2}}(a, b)
\end{array}\right)
$$

The determinant of the Hessian at a critical point is:

- Positive at a local extremum
- Negative at a saddle

The second derivative $\frac{\partial^{2} f}{\partial x^{2}}(a, b)$ is

- Positive at a local minimum of f
- Negative at a local maximum of f

The Second Derivative is a Matrix

If the first derivative is a vector, the second derivative is a matrix!

$$
(\text { Hess } f)(a, b)=\left(\begin{array}{ll}
\frac{\partial^{2} f}{\partial x^{2}}(a, b) & \frac{\partial^{2} f}{\partial x \partial y}(a, b) \\
\frac{\partial^{2} f}{\partial y \partial x}(a, b) & \frac{\partial^{2} f}{\partial y^{2}}(a, b)
\end{array}\right)
$$

The determinant of the Hessian at a critical point is:

- Positive at a local extremum
- Negative at a saddle

The second derivative $\frac{\partial^{2} f}{\partial x^{2}}(a, b)$ is

- Positive at a local minimum of f
- Negative at a local maximum of f

Maxima and Minima in Calculus I and III

Second Derivative Test - Functions of One Variable

$$
f(x)=x^{2}, f^{\prime \prime}(0)>0
$$

$f(x)=-x^{3}, f^{\prime \prime}(0)<0$

$f(x)=x^{3}, f^{\prime \prime}(0)=0$

Second Derivative Test - Functions of Two Variables

$f(x, y)=x^{2}+y^{2}, D=4, f_{x x}(0)=2$

$f(x, y)=-\left(x^{2}+y^{2}\right), D=4$,
$f_{x x}(0)=-2$

$$
f(x, y)=x^{2}-y^{2}, D=-4
$$

Optimization - Critical Points and Boundary Points

To find the absolute maximum and minimum of a function $f(x, y)$ on a domain D :

Example: Optimize the function $f(x, y)=x^{2}-y^{2}$ on the domain

$$
D=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}
$$

Optimization - Critical Points and Boundary Points

To find the absolute maximum and minimum of a function $f(x, y)$ on a domain D :

- Find the interior critical points of f

Example: Optimize the function $f(x, y)=x^{2}-y^{2}$ on the domain

$$
D=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}
$$

$\nabla f(x, y)=\langle 2 x,-2 y\rangle$

Optimization - Critical Points and Boundary Points

To find the absolute maximum and minimum of a function $f(x, y)$ on a domain D :

- Find the interior critical points of f
- Test f at the interior critical points

Example: Optimize the function $f(x, y)=x^{2}-y^{2}$ on the domain

$$
D=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}
$$

$\nabla f(x, y)=\langle 2 x,-2 y\rangle$
$f(0,0)=0$

Optimization - Critical Points and Boundary Points

To find the absolute maximum and minimum of a function $f(x, y)$ on a domain D :

- Find the interior critical points of f
- Test f at the interior critical points
- Use one-variable optimization to find the maximum and minimum of f on each component of the boundary

Example: Optimize the function $f(x, y)=x^{2}-y^{2}$ on the domain

$$
D=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}
$$

$\nabla f(x, y)=\langle 2 x,-2 y\rangle$
$f(0,0)=0$
Parameterize circle:
$x(t)=\cos (t), y(t)=\sin (t)$
$g(t)=\cos ^{2} t-\sin ^{2} t$
$g^{\prime}(t)=-4 \cos (t) \sin (t)$

Optimization - Critical Points and Boundary Points

To find the absolute maximum and minimum of a function $f(x, y)$ on domain D :

- Find the interior critical points of f
- Test f at the interior critical points
- Use one-variable optimization to find the maximum and minimum of f on each component of the boundary
- The largest value of f in this list is its absolute maximum, and the smallest value of f in this list is its absolute minimum

Example: Optimize the function $f(x, y)=x^{2}-y^{2}$ on the domain

$$
D=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}
$$

$$
\begin{aligned}
& \nabla f(x, y)=\langle 2 x,-2 y\rangle \\
& f(0,0)=0 \\
& \text { Parameterize circle: } \\
& x(t)=\cos (t), y(t)=\sin (t) \\
& g(t)=\cos ^{2} t-\sin ^{2} t \\
& g^{\prime}(t)=-4 \cos (t) \sin (t) \\
& g(0)=g(\pi)=1 \\
& g(\pi / 2)=g(3 \pi / 2)=-1
\end{aligned}
$$

Gradients, Level Lines, Level Surfaces

The gradient of $f(x, y)$ is perpendicular to level lines
The gradient of $f(x, y, z)$ is perpendicular to level surfaces
Find the equation of the tangent plane to the surface

$$
x^{2}+4 y^{2}+z^{2}=17
$$

at the point $(2,1,3)$.
Idea: This surface is a level surface of the function

$$
f(x, y, z)=x^{2}+4 y^{2}+z^{2}
$$

Transformations and Their Jacobians

The map $T(u, v)=(x(u, v), y(u, v)$ defines a transformation from the $u v$ plane to the $x y$ plane

Its "derivative" is the Jacobian

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|
$$

The Jacobian enters in the change of variables formula

$$
\iint_{R} f(x, y) d x d y=\iint_{S} f(x(u, v), y(u, v))\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v
$$

if the transformation T maps S to R.
Find the Jacobian of the transformation

$$
x(u, v)=u^{2}-v^{2}, \quad y(u, v)=2 u v
$$

Potentials

Remember the Fundamental Theorem for Line Integrals: If $\mathbf{F}=\nabla f$, and C is parameterized by $\mathbf{r}(t), a \leq t \leq b$, then

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=f(\mathbf{r}(b))-f(\mathbf{r}(a)) .
$$

When is \mathbf{F} a gradient vector field? In general, if $\operatorname{curl} \mathbf{F}=0$, then $\mathbf{F}=\nabla f$ for some potential f

FInd the potential for the vector field

$$
\mathbf{F}(x, y, z)=\sin y \mathbf{i}+(x \cos y+\cos z) \mathbf{j}-y \sin z \mathbf{k}
$$

