Math 213 - Equations of Lines and Planes, I

Peter A. Perry
University of Kentucky

September 6, 2019

Reminders

- Access your WebWork account only through Canvas!
- Homework A2 on Sections 12.3-12.4 is due tonight!
- Applications for an alternate Exam 1 were due Wednesday!

Review your schedule and apply for all alternate exams at once by using the Google Form linked from Canvas or the course home page.

Unit I: Geometry and Motion in Space

12.1 Lecture 1: Three-Dimensional Coordinate Systems
12.2 Lecture 2: Vectors in the Plane and in Space
12.3 Lecture 3:The Dot Product
12.4 Lecture 4:The Cross Product
12.5 Lecture 5: Equations of Lines and Planes, I
12.5 Lecture 6: Equations of Lines and Planes, II
12.6 Lecture 7: Surfaces in Space
13.1 Lecture 8: Vector Functions and Space Curves
13.2 Lecture 9 Derivatives and Integrals of Vector Functions Lecture 10: Exam I Review

Learning Goals

- Learn how to write the parametric equation of a line
- Learn how to write the symmetric equation of a line
- Learn how to write the vector equation of a plane
- Learn how to write the scalar equation of a plane

Line - Vector Equation

A line L in three-dimensional space is determined by

Line - Vector Equation

A line L in three-dimensional space is determined by

- A point $\mathbf{r}_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ on the line

Line - Vector Equation

A line L in three-dimensional space is determined by

- A point $\mathbf{r}_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ on the line
- A vector $\mathbf{v}=\langle a, b, c\rangle$ that gives the direction of the line

Line - Vector Equation

A line L in three-dimensional space is determined by

- A point $\mathbf{r}_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ on the line
- A vector $\mathbf{v}=\langle a, b, c\rangle$ that gives the direction of the line
Any point P on the line can be expressed as

$$
\mathbf{r}_{0}+t \mathbf{v}
$$

for some real number t called the $p a$ rameter

Line - Vector Equation

If

$$
\mathbf{r}_{0}=\left\langle x_{0}, y_{0}, z_{0}\right\rangle, \quad \mathbf{v}=\langle a, b, c\rangle,
$$

the function

$$
\mathbf{r}(t)=\mathbf{r}_{0}+t \mathbf{v}
$$

traces out a line through

$$
P=\left(x_{0}, y_{0}, z_{0}\right)
$$

in the direction of

$$
\mathbf{v}=\langle a, b, c\rangle
$$

Line - Parametric Equation

$$
\begin{aligned}
& \text { If } \mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle \text { then } \\
& \qquad \begin{array}{c}
x(t)=x_{0}+a t \\
y(t)=y_{0}+b t \\
z(t)=z_{0}+c t
\end{array}
\end{aligned}
$$

Line - Parametric Equation

If $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle$ then

$$
\begin{aligned}
& x(t)=x_{0}+a t \\
& y(t)=y_{0}+b t \\
& z(t)=z_{0}+c t
\end{aligned}
$$

gives the parametric equations for a line through $P\left(x_{0}, y_{0}, z_{0}\right)$ in direction $\langle a, b, c\rangle$
(1) Find the parametric equations of a line L through the points $P(1,2,-1)$ and $Q(2,3,4)$.
(2) Find the parametric equations of the line L through the point $(1,2,3)$ and parallel to the vector $\langle 2,-3,4\rangle$

Line - Symmetric Equation

If we begin with the parametric equations of a line:

$$
\begin{aligned}
& x(t)=x_{0}+a t \\
& y(t)=y_{0}+b t \\
& z(t)=z_{0}+c t
\end{aligned}
$$

Line - Symmetric Equation

If we begin with the parametric equations of a line:

$$
\begin{aligned}
& x(t)=x_{0}+a t \\
& y(t)=y_{0}+b t \\
& z(t)=z_{0}+c t
\end{aligned}
$$

we can eliminate the parameter to get the symmetric equation of a line;

$$
\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}
$$

The numbers (a, b, c) are the direction numbers of the line.

Line - Symmetric Equation

If we begin with the parametric equations of a line:

$$
\begin{aligned}
& x(t)=x_{0}+a t \\
& y(t)=y_{0}+b t \\
& z(t)=z_{0}+c t
\end{aligned}
$$

we can eliminate the parameter to get the symmetric equation of a line;

$$
\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}
$$

The numbers (a, b, c) are the direction numbers of the line.
(1) Find the parametric and symmetric equations of the line through the origin and the point $(4,3,-1)$
(2) Find the parametric and symmetric equations of the line through $(2,1,0)$ and perpendicular to both $\mathbf{i}+\mathbf{j}$ and $\mathbf{j}+\mathbf{k}$.

Plane - Vector Equation

A plane is the collection of all points Q :

Plane - Vector Equation

A plane is the collection of all points Q :

- Passing through given point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$

Plane - Vector Equation

A plane is the collection of all points Q :

- Passing through given point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$
- Having the property that $\overrightarrow{P_{0} Q}$ is perpendicular to a vector \mathbf{n}, the normal vector

Plane - Vector Equation

A plane is the collection of all points Q :

- Passing through given point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$
- Having the property that $\overrightarrow{P_{0} Q}$ is perpendicular to a vector \mathbf{n}, the normal vector

That is

$$
\mathbf{n} \cdot \overrightarrow{P_{0} Q}=0
$$

Plane - Vector Equation

A plane is the collection of all points Q :

- Passing through given point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$
- Having the property that $\overrightarrow{P_{0} Q}$ is perpendicular to a vector \mathbf{n}, the normal vector

That is

$$
\begin{gathered}
\mathbf{n} \cdot \overrightarrow{P_{0} Q}=0 \\
\text { If } \mathbf{r}_{0}=\overrightarrow{O P_{0}}, \mathbf{r}=\overrightarrow{O Q}, \text { then } \ldots
\end{gathered}
$$

Plane - Vector Equation

A plane is the collection of all points Q :

- Passing through given point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$
- Having the property that $\overrightarrow{P_{0} Q}$ is perpendicular to a vector \mathbf{n}, the normal vector

That is

$$
\begin{gathered}
\mathbf{n} \cdot \overrightarrow{P_{0} Q}=0 \\
\text { If } \mathbf{r}_{0}=\overrightarrow{O P_{0}}, \mathbf{r}=\overrightarrow{O Q}, \text { then } \ldots
\end{gathered}
$$

$$
\mathbf{n} \cdot\left(\mathbf{r}-\mathbf{r}_{0}\right)=0 \quad \text { OR } \quad \mathbf{n} \cdot \mathbf{r}=\mathbf{n} \cdot \mathbf{r}_{0}
$$

Plane - Scalar Equation

A plane is the collection of all points Q :

- Passing through given point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$
- Having the property that $\overrightarrow{P_{0} Q}$ is perpendicular to a vector \mathbf{n}, the normal vector That is

$$
\mathbf{n} \cdot \overrightarrow{P_{0} Q}=0
$$

Plane - Scalar Equation

A plane is the collection of all points Q :

- Passing through given point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$
- Having the property that $\overrightarrow{P_{0} Q}$ is perpendicular to a vector \mathbf{n}, the normal vector That is

$$
\begin{gathered}
\mathbf{n} \cdot \overrightarrow{P_{0} Q}=0 \\
\text { If } Q=(x, y, z), \mathbf{n}=\langle a, b, c\rangle \text {, then }
\end{gathered}
$$

Plane - Scalar Equation

A plane is the collection of all points Q :

- Passing through given point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$
- Having the property that $\overrightarrow{P_{0} Q}$ is perpendicular to a vector \mathbf{n}, the normal vector That is

$$
\mathbf{n} \cdot \overrightarrow{P_{0} Q}=0
$$

If $Q=(x, y, z), \mathbf{n}=\langle a, b, c\rangle$, then

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0
$$

Plane Puzzlers

Let

$$
P_{0}=P_{0}\left(x_{0}, y_{0}, z_{0}\right), \quad \mathbf{n}=\langle a, b, c\rangle, \quad P=P(x, y, z)
$$

The vector equation of the plane through P_{0} with normal \mathbf{n} is

$$
\mathbf{n} \cdot \mathbf{r}=\mathbf{n} \cdot \mathbf{r}_{0}
$$

where \mathbf{r} and \mathbf{r}_{0} are position vectors for P and P_{0} respectively.
The scalar equation of the plane through P_{0} with normal \mathbf{n} is

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0
$$

(1) Find the vector equation of a plane through the origin and perpendicular to the vector $\langle-1,2,5\rangle$
(2) Find the scalar equation of the plane through $(1,-1,-1)$ and parallel to the plane $5 x-y-z=6$
(3) Find the equation of the plane that contains the line $x=1+t, y=2-t, z=4-3 t$ and is parallel to the plane $5 x+2 y+z=1$

Summary

- We learned that a line is determined by a point $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ on the line, and a vector $\mathbf{v}=\langle a, b, c\rangle$ that points along the line
- The parametric equations of a line are

$$
x(t)=x_{0}+a t, \quad y(t)=y_{0}+b t, \quad z(t)=z_{0}+c t
$$

- The symmetric equations of a line are

$$
\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}
$$

- We learned that a plane is determined by a point $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ in the plane and a vector $\mathbf{n}=\langle a, b, c\rangle$ normal to the plane
- The vector equation of a plane is

$$
\mathbf{n} \cdot\left(\mathbf{r}-\mathbf{r}_{0}\right)=0
$$

- The scalar equation of a plane is

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0
$$

Homework

- Webwork A2 is due tonight!
- Re-read section 12.5, pp. 823-830

