Math 213 - Space Curves

Peter A. Perry

University of Kentucky

September 13, 2019

Reminders

- Access your WebWork account only through Canvas!
- Homework A4 on section 12.6 is due tonight
- The Review Session for Exam 1 will take place on Monday, September 16 from 6 PM to 8 PM in KAS 213
- On Wednesday September 18 we will have an in-class review for Exam I
- Exam 1 takes place next Wednesday, September 18. Section 17 will meet in CB 118, and sections 18 and 19 will meet in CB 122.

Unit I: Geometry and Motion in Space

12.1 Lecture 1: Three-Dimensional Coordinate Systems
12.2 Lecture 2: Vectors in the Plane and in Space
12.3 Lecture 3:The Dot Product
12.4 Lecture 4:The Cross Product
12.5 Lecture 5: Equations of Lines and Planes, I
12.5 Lecture 6: Equations of Lines and Planes, II
12.6 Lecture 7: Surfaces in Space
13.1 Lecture 8: Vector Functions and Space Curves
13.2 Lecture 9 Derivatives and Integrals of Vector Functions Lecture 10: Exam I Review

Learning Goals

- Understand what a vector-valued function is
- Understand limits and continuity for vector-valued functions
- Learn to visualize space curves:
(i) by computing their projections onto the $x y, x z$, and $y z$ planes,
(ii) by viewing them as intersections of surfaces

Vector-Valued Functions

A vector-valued function is a function $\mathbf{r}(t)$ whose domain is a set of real numbers and whose range is a set of vectors in two- or three-dimensional space. We can specify $\mathbf{r}(t)$ through its component functions:

$$
\mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}
$$

Example you already know: If $\mathbf{r}_{0}=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ and $\mathbf{v}=\langle a, b, c\rangle$, then

$$
\mathbf{r}(t)=\mathbf{r}_{0}+t \mathbf{v}
$$

is a vector-valued function with component functions

$$
f(t)=x_{0}+a t, \quad g(t)=y_{0}+b t, \quad h(t)=z_{0}+c t
$$

Vector Function Basics

(1) What is the domain of the function $\mathbf{r}(t)=\left\langle\ln (t+1), \frac{t}{9-t^{2}}, 2^{t}\right\rangle$?
(2) What is $\lim _{t \rightarrow 1}\left(\frac{t^{2}-t}{t-1} \mathbf{i}+\sqrt{t+8} \mathbf{j}+\frac{\sin \pi t}{\ln t} \mathbf{k}\right)$?
(3) Can you match these curves with their graphs?
(a) $\mathbf{r}(t)=\langle t \sin t, t \cos t, t\rangle$
(b) $x=\cos t, y=\sin t, z=\cos 2 t$
(c) $x=\cos t, y=t, z=\sin t$

Breaking it Down: Limits and Continuity

The limit of a vector-valued function is the limit of the component functions:

$$
\lim _{t \rightarrow t_{0}}\langle x(t), y(t), z(t)\rangle=\left\langle\lim _{t \rightarrow t_{0}} x(t), \lim _{t \rightarrow t_{0}} y(t), \lim _{t \rightarrow t_{0}} z(t)\right\rangle
$$

A vector-valued function $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle$ is continuous at $t=a$ if each of the component functions $x(t), y(t), z(t)$ is continuous at $t=a$

In short, $\mathbf{r}(t)$ is continuous at a if $\lim _{t \rightarrow a} \mathbf{r}(t)=\mathbf{r}(a)$

Space Curves

If $\mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle$ is a vector function defined on an interval I, the set of all points $(x(t), y(t), z(t)$ for t in the interval I is called a space curve C. The equations $x=f(t), y=g(t), z=h(t)$ are called the parametric equations for C.

Match each of the space curves shown with their parametric equations.

$$
\begin{array}{ll}
\mathbf{r}(t)=\langle\sin t, t\rangle & \mathbf{r}(t)=\left\langle t^{2}-1, t\right\rangle \\
\mathbf{r}(t)=\left\langle t^{2}, t^{3}, t^{4}\right\rangle & \mathbf{r}(t)=\langle\cos t,-\cos t, \sin t\rangle
\end{array}
$$

Line Segments are Space Curves

(1) Find the vector equation and parametric equations for the line segment from $P(2,0,0)$ to $Q(6,2,-2)$
2. Find the vector equation and parametric equations for the line segment from $P(a, b, c)$ to $Q(u, v, w)$

Visualizing It: Projections

Consider the space curve with parametric equations

$$
x(t)=\cos t, \quad y(t)=t \quad z(t)=\sin t
$$

Visualizing It: Projections

Consider the space curve with parametric equations

$$
x(t)=\cos t, \quad y(t)=t \quad z(t)=\sin t
$$

(1) Find the projection of this curve onto the $x z$ plane (the side wall)

Visualizing It: Projections

Consider the space curve with parametric equations

$$
x(t)=\cos t, \quad y(t)=t \quad z(t)=\sin t
$$

(1) Find the projection of this curve onto the $x z$ plane (the side wall)
(2) Find the projection of this curve onto the $x y$ plane (the floor)

Visualizing It: Projections

Consider the space curve with parametric equations

$$
x(t)=\cos t, \quad y(t)=t \quad z(t)=\sin t
$$

(1) Find the projection of this curve onto the $x z$ plane (the side wall)
2 Find the projection of this curve onto the $x y$ plane (the floor)
(3) Find the projection of this curve onto the $y z$ plane (the back wall)

Visualizing It: Projections

Consider the space curve with parametric equations

$$
x(t)=\cos t, \quad y(t)=t \quad z(t)=\sin t
$$

(1) Find the projection of this curve onto the $x z$ plane (the side wall)
2 Find the projection of this curve onto the $x y$ plane (the floor)
(3) Find the projection of this curve onto the $y z$ plane (the back wall)

Visualizing It: Surfaces

Let's take another look at the curve

$$
x(t)=\cos t, \quad y(t)=t \quad z(t)=\sin t
$$

Visualizing It: Surfaces

Let's take another look at the curve

$$
x(t)=\cos t, \quad y(t)=t \quad z(t)=\sin t
$$

(1) Show that this curve lies on the cylinder $x^{2}+z^{2}=1$

Visualizing It: Surfaces

Let's take another look at the curve

$$
x(t)=\cos t, \quad y(t)=t \quad z(t)=\sin t
$$

(1) Show that this curve lies on the cylinder $x^{2}+z^{2}=1$
(2) Sketch the curve and the surface on the same set of axes

Visualizing It: Surfaces

Let's take another look at the curve

$$
x(t)=\cos t, \quad y(t)=t \quad z(t)=\sin t
$$

(1) Show that this curve lies on the cylinder $x^{2}+z^{2}=1$
(2) Sketch the curve and the surface on the same set of axes

Visualizing It: Surfaces

Let's revisit the curve

$$
x(t)=t \cos t, \quad y(t)=t \sin t, \quad z(t)=t
$$

(1) Show that this curve lies on the right circular cone $z^{2}=x^{2}+y^{2}$
(2) Sketch the curve and the surface on the same set of axes.

Visualizing It: Surfaces

Let's revisit the curve

$$
x(t)=t \cos t, \quad y(t)=t \sin t, \quad z(t)=t
$$

(1) Show that this curve lies on the right circular cone $z^{2}=x^{2}+y^{2}$
(2) Sketch the curve and the surface on the same set of axes.

Visualizing It: Surfaces

Let's revisit the curve

$$
x(t)=t \cos t, \quad y(t)=t \sin t, \quad z(t)=t
$$

(1) Show that this curve lies on the right circular cone $z^{2}=x^{2}+y^{2}$
(2) Sketch the curve and the surface on the same set of axes.

Visualizing It: Surfaces

Let's revisit the curve

$$
x(t)=t \cos t, \quad y(t)=t \sin t, \quad z(t)=t
$$

(1) Show that this curve lies on the right circular cone $z^{2}=x^{2}+y^{2}$
(2) Sketch the curve and the surface on the same set of axes.

Visualize It: Space Curves and Surfaces

Show that the curve with parametric equations

$$
x=\sin t, \quad y=\cos t, \quad z=\sin ^{2} t
$$

is the curve of intersection of the surfaces $z=x^{2}$ and $x^{2}+y^{2}=1$.

- The surface $z=x^{2}$ is a cylinder with curve $z=x^{2}$ parallel to the y-axis
- The surface $x^{2}+y^{2}=1$ is a cylinder of radius 1 parallel to the the z-axis
- Their intersection is the parametric curve above

Visualize It: Space Curves and Surfaces

Show that the curve with parametric equations

$$
x=\sin t, \quad y=\cos t, \quad z=\sin ^{2} t
$$

is the curve of intersection of the surfaces $z=x^{2}$ and $x^{2}+y^{2}=1$.

- The surface $z=x^{2}$ is a cylinder with curve $z=x^{2}$ parallel to the y-axis
- The surface $x^{2}+y^{2}=1$ is a cylinder of radius 1 parallel to the the z-axis
- Their intersection is the parametric curve above

Visualize It: Space Curves and Surfaces

Show that the curve with parametric equations

$$
x=\sin t, \quad y=\cos t, \quad z=\sin ^{2} t
$$

is the curve of intersection of the surfaces $z=x^{2}$ and $x^{2}+y^{2}=1$.

- The surface $z=x^{2}$ is a cylinder with curve $z=x^{2}$ parallel to the y-axis
- The surface $x^{2}+y^{2}=1$ is a cylinder of radius 1 parallel to the the z-axis
- Their intersection is the parametric curve above

Visualize It: Space Curves and Surfaces

Show that the curve with parametric equations

$$
x=\sin t, \quad y=\cos t, \quad z=\sin ^{2} t
$$

is the curve of intersection of the surfaces $z=x^{2}$ and $x^{2}+y^{2}=1$.

- The surface $z=x^{2}$ is a cylinder with curve $z=x^{2}$ parallel to the y-axis
- The surface $x^{2}+y^{2}=1$ is a cylinder of radius 1 parallel to the the z-axis
- Their intersection is the parametric curve above

Intersections

(1) Find the points where the helix

$$
\mathbf{r}(t)=\langle\sin (t), \cos (t), t\rangle
$$

intersects the sphere

$$
x^{2}+y^{2}+z^{2}=5
$$

Intersections

(1) Find the points where the helix

$$
\mathbf{r}(t)=\langle\sin (t), \cos (t), t\rangle
$$

intersects the sphere

$$
x^{2}+y^{2}+z^{2}=5
$$

(2) Find the curve that describes the intersection of the parabolic cylinder $y=x^{2}$ and the top half of the ellipsoid

$$
x^{2}+4 y^{2}+4 z^{2}=16
$$

Intersections

Two particles travel along the space curves

$$
\mathbf{r}_{1}(t)=\left\langle t, t^{2}, t^{3}\right\rangle, \quad \mathbf{r}_{2}(t)=\langle 1+2 t, 1+6 t, 1+14 t\rangle
$$

Do the particles collide? Do their paths intersect?

Recall:
Two particles collide if $\mathbf{r}_{1}(t)=\mathbf{r}_{2}(t)$ for the same t.
Two particles intersect if $\mathbf{r}_{1}(s)=\mathbf{r}_{2}(t)$ for (possibly different) times s and t.

Summary

- We learned what a vector-valued function
- We learned how to compute limits of space curves
- We learned what it means for a space curve to be continuous
- We learned how to visualize space curves as described by vector-valued functions

Homework

- Begin reviewing for Exam I
- Re-read section 13.1
- Read section 13.2 for Monday
- Begin work on Webwork A5 which is due no later than next Wednesday

