Math 213 - Calculus for Vector Functions

Peter A. Perry

University of Kentucky

September 16, 2019

- *** ロト * @ ト *** ヨト * ヨト - ヨー * 9 < (*)

Peter A. Perry

Math 213 - Calculus for Vector Functions

		00
Reminders		

- Access your WebWork account only through Canvas!
- Homework A5 on section 13.1-13.2 is due Wednesday
- The Review Session for Exam 1 will take place tonight from 6 PM to 8 PM in KAS 213
- On Wednesday September 18 we will have an in-class review for Exam I
- Exam 1 takes place next Wednesday, September 18. Section 17 will meet in CB 118, and sections 18 and 19 will meet in CB 122.

Unit I: Geometry and Motion in Space

- 12.1 Lecture 1: Three-Dimensional Coordinate Systems
- 12.2 Lecture 2: Vectors in the Plane and in Space
- 12.3 Lecture 3: The Dot Product
- 12.4 Lecture 4:The Cross Product
- 12.5 Lecture 5: Equations of Lines and Planes, I
- 12.5 Lecture 6: Equations of Lines and Planes, II
- 12.6 Lecture 7: Surfaces in Space
- 13.1 Lecture 8: Vector Functions and Space Curves
- 13.2 Lecture 9 Derivatives and Integrals of Vector Functions Lecture 10: Exam I Review

	00

Learning Goals

- Know how to compute derivatives and integrals of vector functions
- Know how to use the derivative to find tangent lines and unit tangents
- Know how to compute the arc length of a space curve

Derivatives and Integrals	Tangent lines, Unit Tangent OO	Arc Length	0000	Summary	00
Mechanics					
Derivative: if	$\mathbf{r}(t) = \langle f(t), g$	$g(t),h(t)\rangle$			
then	$\mathbf{r}'(t) = \langle f'(t), g$	$g'(t), h'(t)\rangle$			
Definite Integral: If	$\mathbf{r}(t) = \langle f(t), g \rangle$	$\langle t, h(t) \rangle$			

then

$$\int_{a}^{b} \mathbf{r}(t) dt = \left\langle \int_{a}^{b} f(t) dt, \int_{a}^{b} g(t) dt, \int_{a}^{b} h(t) dt \right\rangle$$

Indefinite integral: if

$$\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle$$

then

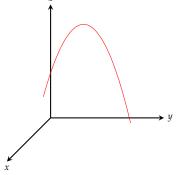
$$\int \mathbf{r}(t) dt = \left\langle \int f(t) dt, \int g(t) dt, \int h(t) dt \right\rangle + \mathbf{C}$$

イロト イロト イヨト イヨト

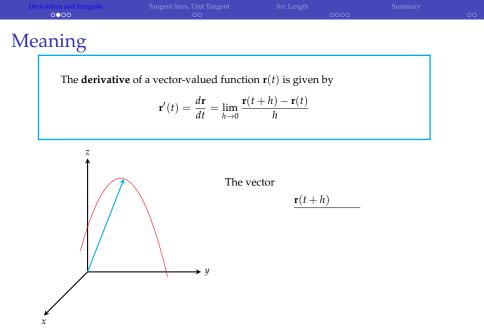
2

where \boldsymbol{C} is a constant vector

	tives and Integrals	Tangent lines, Unit Tangent 00	Arc Length 0000	Summary	00
Mea	ning				
	The derivativ	e of a vector-valued functio	on $\mathbf{r}(t)$ is given by		
		$\mathbf{r}'(t) = \frac{d\mathbf{r}}{dt} = \lim_{h \to 0} \frac{\mathbf{r}(t)}{dt}$	$\frac{(k+h)-\mathbf{r}(t)}{h}$		
L	Z				
	\uparrow	<			



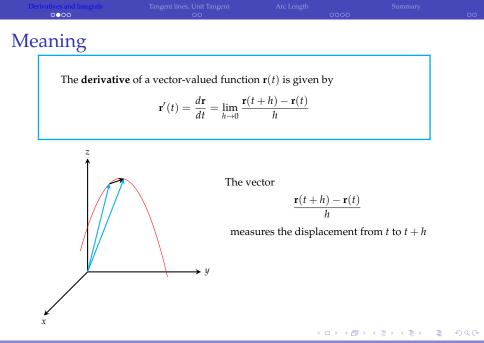
▲□▶▲@▶▲≧▶▲≧▶ ≧ のへで

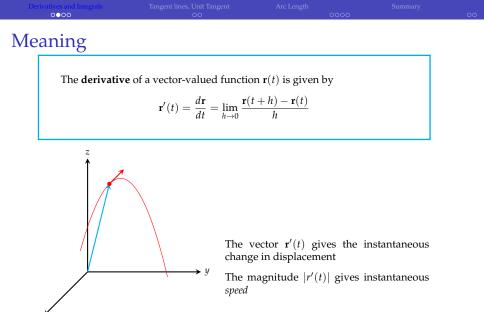


ヘロト ヘアト ヘビト ヘビト

3

Math 213 - Calculus for Vector Functio





イロト イポト イヨト イヨト

Derivatives and Integrals		
Tangent Vectors		

Sketch the plane curve $\mathbf{r}(t) = \langle t - 2, t^2 + 1 \rangle$ and sketch the tangent vector at t = -1

Peter A. Perry

Math 213 - Calculus for Vector Function:

Derivatives and Integrals		
Tangent Vectors		

Sketch the plane curve $\mathbf{r}(t) = \langle t - 2, t^2 + 1 \rangle$ and sketch the tangent vector at t = -1

Peter A. Perry

Math 213 - Calculus for Vector Function

Derivatives and Integrals		
Tangent Vectors		

Sketch the plane curve $\mathbf{r}(t) = \langle t - 2, t^2 + 1 \rangle$ and sketch the tangent vector at t = -1

Peter A. Perry

Math 213 - Calculus for Vector Function

Derivatives and Integrals		mary
0000		00

Lots of Rules

$$\begin{aligned} \frac{d}{dt} \left(\mathbf{u}(t) + \mathbf{v}(t) \right) &= \mathbf{u}'(t) + \mathbf{v}'(t) \\ \frac{d}{dt} \left(c\mathbf{u}(t) \right) &= c\mathbf{u}'(t) \\ \frac{d}{dt} \left(f(t)\mathbf{u}(t) \right) &= f'(t)\mathbf{u}(t) + f(t)\mathbf{u}'(t) \\ \frac{d}{dt} \left(\mathbf{u}(t) \cdot \mathbf{v}(t) \right) &= \mathbf{u}'(t) \cdot \mathbf{v}(t) + \mathbf{u}(t) \cdot \mathbf{v}'(t) \\ \frac{d}{dt} \left(\mathbf{u}(t) \times \mathbf{v}(t) \right) &= \mathbf{u}'(t) \times \mathbf{v}(t) + \mathbf{u}(t) \times \mathbf{v}'(t) \\ \frac{d}{dt} \left(\mathbf{u}(t) \times \mathbf{v}(t) \right) &= \mathbf{u}'(t) \times \mathbf{v}(t) + \mathbf{u}(t) \times \mathbf{v}'(t) \\ \frac{d}{dt} \left(\mathbf{u}(f(t)) \right) &= f'(t)\mathbf{u}'(f(t)) \end{aligned}$$

There are three different versions of the "product rule"!

Tangent lines, Unit Tangent		
00		

Tangent Lines

Find parametric equations for the tangent line to the curve

$$x = t$$
, $y = e^{-t}$, $z = 2t - t^2$

at (0, 1, 0).

- What value of *t* corresponds to (0, 1, 0)?
- What is **r**'(*t*) for this value of *t*?
- What are the point on the line and the vector along the line used to derive the parametric equations?

() <) <)</p>

Tangent lines, Unit Tangent		
00		

Tangent Lines, Unit Tangent Vector

The **unit tangent** to $\mathbf{r}(t)$ is the vector

$$\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|}.$$

1 If $\mathbf{r}(t) = \langle t, t^2, t^3 \rangle$, find $\mathbf{r}'(t)$, $\mathbf{T}(1)$, $\mathbf{r}''(t)$, and $\mathbf{r}'(t) \times \mathbf{r}''(t)$

2 If
$$\mathbf{r}(t) = \langle e^{2t}, e^{-2t}, te^{2t} \rangle$$
, find $\mathbf{T}(0), \mathbf{r}''(0)$, and $\mathbf{r}'(t) \cdot \mathbf{r}''(t)$

(3) Find the intersection of the curves $\mathbf{r}_1(t) = \langle t, t^2, t^3 \rangle$ and $\mathbf{r}_2(t) = \langle \sin t, \sin 2t, t \rangle$ and compute their angle of intersection.

A = A = B
 A = B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Arc Length - Two Dimensions

The arc length of a plane curve x = f(t), y = g(t), $a \le t \le b$ is

$$L = \int_{a}^{b} \sqrt{[f'(t)]^{2} + [g'(t)]^{2}} dt$$

Notice that:

0000

Arc Length - Two Dimensions

The arc length of a plane curve x = f(t), y = g(t), $a \le t \le b$ is

$$L = \int_{a}^{b} \sqrt{[f'(t)]^{2} + [g'(t)]^{2}} dt$$

Notice that:

• If $\mathbf{r}(t) = \langle f(t), g(t) \rangle$, then $\mathbf{r}'(t) = \langle f'(t), g'(t) \rangle$

So

$$|\mathbf{r}'(t)| = \sqrt{[f'(t)]^2 + [g'(t)]^2}$$

Peter A. Perry

Math 213 - Calculus for Vector Functions

0000

Arc Length - Two Dimensions

The arc length of a plane curve x = f(t), y = g(t), $a \le t \le b$ is

$$L = \int_{a}^{b} \sqrt{[f'(t)]^{2} + [g'(t)]^{2}} dt$$

Notice that:

• If $\mathbf{r}(t) = \langle f(t), g(t) \rangle$, then $\mathbf{r}'(t) = \langle f'(t), g'(t) \rangle$

• So
$$|\mathbf{r}'(t)| = \sqrt{[f'(t)]^2 + [g'(t)]^2}$$

• So we can write the arc length formula s

$$L = \int_{a}^{b} |\mathbf{r}'(t)| \, dt$$

Peter A. Perry

Math 213 - Calculus for Vector Functions

(클 ► 클 ∽) ९ (University of Kentucky

イロト イポト イヨト イヨト

Arc Length - Three Dimensions

The arc length of the space curve

$$x = f(t), \quad y = g(t), \quad z = h(t)$$

for $a \le t \le b$ is

$$L = \int_{a}^{b} \sqrt{[f'(t)]^{2} + [g'(t)]^{2} + [h'(t)]^{2}} dt$$

which is easiest to remember as

$$L = \int_{a}^{b} \left| \mathbf{r}'(t) \right| \, dt$$

イロト 不得 トイヨト イヨト

After all, distance travelled should be the integral of speed!

Arc Length - Three Dimensions

$$L = \int_{a}^{b} \left| \mathbf{r}'(t) \right| \, dt$$

1 Find the arc length of the curve

$$\mathbf{r}(t) = \langle t, 3\cos t, 3\sin t \rangle$$

for $-5 \le t \le 5$.

2 Find the arc length of the curve

 $\mathbf{i} + t^2 \mathbf{j} + t^3 \mathbf{k}$

イロト イポト イヨト イヨト

3

for $0 \le t \le 1$.

The Arc Length Function

If C is a space curve given by a vector function

$$\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$$

for $a \le t \le b$, the **arc length function** for *C* is given by

$$s(t) = \int_{a}^{t} \left| \mathbf{r}'(u) \right| \, dt$$

By the Fundamental Theorem of Calculus,

$$\frac{ds}{dt} = \left| \mathbf{r}'(t) \right|.$$

Find the arc length function for the curve

$$\mathbf{r}(t) = \cos t \mathbf{i} + \sin t \mathbf{j} + t \mathbf{k},$$

3 → ∢ 3

 $0 \le t \le 4\pi$ and re-parameterize this curve by arc length.

		00
Current of the		
Summary		

- We learned how to compute derivatives and integrals of vector functions
- We learned how to use the derivative to find the tangent line and unit tangent to a space curve at a given point
- We learned how to compute the arc length of a space curve (the distance travelled along the curve)

	00

Homework

- Continue reviewing for Exam I
- Re-read section 13.2
- Continue on Webwork A5 which is due no later than Wednesday