Math 213 - Calculus for Vector Functions

Peter A. Perry
University of Kentucky

September 16, 2019

Reminders

- Access your WebWork account only through Canvas!
- Homework A5 on section 13.1-13.2 is due Wednesday
- The Review Session for Exam 1 will take place tonight from 6 PM to 8 PM in KAS 213
- On Wednesday September 18 we will have an in-class review for Exam I
- Exam 1 takes place next Wednesday, September 18. Section 17 will meet in CB 118, and sections 18 and 19 will meet in CB 122.

Unit I: Geometry and Motion in Space

12.1 Lecture 1: Three-Dimensional Coordinate Systems
12.2 Lecture 2: Vectors in the Plane and in Space
12.3 Lecture 3:The Dot Product
12.4 Lecture 4:The Cross Product
12.5 Lecture 5: Equations of Lines and Planes, I
12.5 Lecture 6: Equations of Lines and Planes, II
12.6 Lecture 7: Surfaces in Space
13.1 Lecture 8: Vector Functions and Space Curves
13.2 Lecture 9 Derivatives and Integrals of Vector Functions Lecture 10: Exam I Review

Learning Goals

- Know how to compute derivatives and integrals of vector functions
- Know how to use the derivative to find tangent lines and unit tangents
- Know how to compute the arc length of a space curve

Mechanics

Derivative: if

$$
\mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle
$$

then

$$
\mathbf{r}^{\prime}(t)=\left\langle f^{\prime}(t), g^{\prime}(t), h^{\prime}(t)\right\rangle
$$

Definite Integral: If

$$
\mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle
$$

then

$$
\int_{a}^{b} \mathbf{r}(t) d t=\left\langle\int_{a}^{b} f(t) d t, \int_{a}^{b} g(t) d t, \int_{a}^{b} h(t) d t\right\rangle
$$

Indefinite integral: if

$$
\mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle
$$

then

$$
\int \mathbf{r}(t) d t=\left\langle\int f(t) d t, \int g(t) d t, \int h(t) d t\right\rangle+\mathbf{C}
$$

where \mathbf{C} is a constant vector

Meaning

The derivative of a vector-valued function $\mathbf{r}(t)$ is given by

$$
\mathbf{r}^{\prime}(t)=\frac{d \mathbf{r}}{d t}=\lim _{h \rightarrow 0} \frac{\mathbf{r}(t+h)-\mathbf{r}(t)}{h}
$$

Meaning

The derivative of a vector-valued function $\mathbf{r}(t)$ is given by

$$
\mathbf{r}^{\prime}(t)=\frac{d \mathbf{r}}{d t}=\lim _{h \rightarrow 0} \frac{\mathbf{r}(t+h)-\mathbf{r}(t)}{h}
$$

The vector

$$
\mathbf{r}(t+h)
$$

Meaning

The derivative of a vector-valued function $\mathbf{r}(t)$ is given by

$$
\mathbf{r}^{\prime}(t)=\frac{d \mathbf{r}}{d t}=\lim _{h \rightarrow 0} \frac{\mathbf{r}(t+h)-\mathbf{r}(t)}{h}
$$

The vector

$$
\frac{\mathbf{r}(t+h)-\mathbf{r}(t)}{h}
$$

measures the displacement from t to $t+h$

Meaning

The derivative of a vector-valued function $\mathbf{r}(t)$ is given by

$$
\mathbf{r}^{\prime}(t)=\frac{d \mathbf{r}}{d t}=\lim _{h \rightarrow 0} \frac{\mathbf{r}(t+h)-\mathbf{r}(t)}{h}
$$

The vector $\mathbf{r}^{\prime}(t)$ gives the instantaneous change in displacement

The magnitude $\left|r^{\prime}(t)\right|$ gives instantaneous speed

Tangent Vectors

Sketch the plane curve $\mathbf{r}(t)=\left\langle t-2, t^{2}+1\right\rangle$ and sketch the tangent vector at $t=-1$

Tangent Vectors

Sketch the plane curve $\mathbf{r}(t)=\left\langle t-2, t^{2}+1\right\rangle$ and sketch the tangent vector at $t=-1$

Tangent Vectors

Sketch the plane curve $\mathbf{r}(t)=\left\langle t-2, t^{2}+1\right\rangle$ and sketch the tangent vector at $t=-1$

Lots of Rules

$$
\begin{aligned}
\frac{d}{d t}(\mathbf{u}(t)+\mathbf{v}(t)) & =\mathbf{u}^{\prime}(t)+\mathbf{v}^{\prime}(t) \\
\frac{d}{d t}(c \mathbf{u}(t)) & =c \mathbf{u}^{\prime}(t) \\
\frac{d}{d t}(f(t) \mathbf{u}(t)) & =f^{\prime}(t) \mathbf{u}(t)+f(t) \mathbf{u}^{\prime}(t) \\
\frac{d}{d t}(\mathbf{u}(t) \cdot \mathbf{v}(t)) & =\mathbf{u}^{\prime}(t) \cdot \mathbf{v}(t)+\mathbf{u}(t) \cdot \mathbf{v}^{\prime}(t) \\
\frac{d}{d t}(\mathbf{u}(t) \times \mathbf{v}(t)) & =\mathbf{u}^{\prime}(t) \times \mathbf{v}(t)+\mathbf{u}(t) \times \mathbf{v}^{\prime}(t) \\
\frac{d}{d t}(\mathbf{u}(f(t))) & =f^{\prime}(t) \mathbf{u}^{\prime}(f(t))
\end{aligned}
$$

There are three different versions of the "product rule"!

Tangent Lines

Find parametric equations for the tangent line to the curve

$$
x=t, \quad y=e^{-t}, \quad z=2 t-t^{2}
$$

at $(0,1,0)$.

- What value of t corresponds to $(0,1,0)$?
- What is $\mathbf{r}^{\prime}(t)$ for this value of t ?
- What are the point on the line and the vector along the line used to derive the parametric equations?

Tangent Lines, Unit Tangent Vector

The unit tangent to $\mathbf{r}(t)$ is the vector

$$
\mathbf{T}(t)=\frac{\mathbf{r}^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|}
$$

(1) If $\mathbf{r}(t)=\left\langle t, t^{2}, t^{3}\right\rangle$, find $\mathbf{r}^{\prime}(t), \mathbf{T}(1), \mathbf{r}^{\prime \prime}(t)$, and $\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)$

2 If $\mathbf{r}(t)=\left\langle e^{2 t}, e^{-2 t}, t e^{2 t}\right\rangle$, find $\mathbf{T}(0), \mathbf{r}^{\prime \prime}(0)$, and $\mathbf{r}^{\prime}(t) \cdot \mathbf{r}^{\prime \prime}(t)$
(3) Find the intersection of the curves $\mathbf{r}_{1}(t)=\left\langle t, t^{2}, t^{3}\right\rangle$ and $\mathbf{r}_{2}(t)=\langle\sin t, \sin 2 t, t\rangle$ and compute their angle of intersection.

Arc Length - Two Dimensions

The arc length of a plane curve $x=f(t), y=g(t), a \leq t \leq b$ is

$$
L=\int_{a}^{b} \sqrt{\left[f^{\prime}(t)\right]^{2}+\left[g^{\prime}(t)\right]^{2}} d t
$$

Notice that:

Arc Length - Two Dimensions

The arc length of a plane curve $x=f(t), y=g(t), a \leq t \leq b$ is

$$
L=\int_{a}^{b} \sqrt{\left[f^{\prime}(t)\right]^{2}+\left[g^{\prime}(t)\right]^{2}} d t
$$

Notice that:

- If $\mathbf{r}(t)=\langle f(t), g(t)\rangle$, then $\mathbf{r}^{\prime}(t)=\left\langle f^{\prime}(t), g^{\prime}(t)\right\rangle$
- So

$$
\left|\mathbf{r}^{\prime}(t)\right|=\sqrt{\left[f^{\prime}(t)\right]^{2}+\left[g^{\prime}(t)\right]^{2}}
$$

Arc Length - Two Dimensions

The arc length of a plane curve $x=f(t), y=g(t), a \leq t \leq b$ is

$$
L=\int_{a}^{b} \sqrt{\left[f^{\prime}(t)\right]^{2}+\left[g^{\prime}(t)\right]^{2}} d t
$$

Notice that:

- If $\mathbf{r}(t)=\langle f(t), g(t)\rangle$, then $\mathbf{r}^{\prime}(t)=\left\langle f^{\prime}(t), g^{\prime}(t)\right\rangle$
- So

$$
\left|\mathbf{r}^{\prime}(t)\right|=\sqrt{\left[f^{\prime}(t)\right]^{2}+\left[g^{\prime}(t)\right]^{2}}
$$

- So we can write the arc length formula s

$$
L=\int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| d t
$$

Arc Length - Three Dimensions

The arc length of the space curve

$$
x=f(t), \quad y=g(t), \quad z=h(t)
$$

for $a \leq t \leq b$ is

$$
L=\int_{a}^{b} \sqrt{\left[f^{\prime}(t)\right]^{2}+\left[g^{\prime}(t)\right]^{2}+\left[h^{\prime}(t)\right]^{2}} d t
$$

which is easiest to remember as

$$
L=\int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| d t
$$

After all, distance travelled should be the integral of speed!

Arc Length - Three Dimensions

$$
L=\int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| d t
$$

(1) Find the arc length of the curve

$$
\mathbf{r}(t)=\langle t, 3 \cos t, 3 \sin t\rangle
$$

for $-5 \leq t \leq 5$.
(2) Find the arc length of the curve

$$
\mathbf{i}+t^{2} \mathbf{j}+t^{3} \mathbf{k}
$$

for $0 \leq t \leq 1$.

The Arc Length Function

If C is a space curve given by a vector function

$$
\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}
$$

for $a \leq t \leq b$, the arc length function for C is given by

$$
s(t)=\int_{a}^{t}\left|\mathbf{r}^{\prime}(u)\right| d t
$$

By the Fundamental Theorem of Calculus,

$$
\frac{d s}{d t}=\left|\mathbf{r}^{\prime}(t)\right|
$$

Find the arc length function for the curve

$$
\mathbf{r}(t)=\cos t \mathbf{i}+\sin t \mathbf{j}+t \mathbf{k}
$$

$0 \leq t \leq 4 \pi$ and re-parameterize this curve by arc length.

Summary

- We learned how to compute derivatives and integrals of vector functions
- We learned how to use the derivative to find the tangent line and unit tangent to a space curve at a given point
- We learned how to compute the arc length of a space curve (the distance travelled along the curve)

Homework

- Continue reviewing for Exam I
- Re-read section 13.2
- Continue on Webwork A5 which is due no later than Wednesday

