Math 213 - Exam I Review

Peter A. Perry
University of Kentucky

February 6, 2019

Homework

- Your test is tonight, February 6 at 5:00 PM in Room CB 106
- Remember that you're allowed an $8-1 / 2^{\prime \prime} \times 11^{\prime \prime}$ sheet of paper with notes on both sides
- Be sure to bring your student ID and to arrive 10 minutes early so that we can start the exam on time and get you out by 7 PM
- Remember that Webwork A6 on 13.3-13.4 is due tonight!

Unit I: Geometry and Motion in Space

Lecture 1 Three-Dimensional Coordinate Systems
Lecture 2 Vectors
Lecture 3 The Dot Product
Lecture 4 The Cross Product
Lecture 5 Equations of Lines and Planes, Part I
Lecture 6 Equations of Lines and Planes, Part II
Lecture 7 Cylinders and Quadric Surfaces
Lecture 8 Vector Functions and Space Curves
Lecture 9 Derivatives and integrals of Vector Functions
Lecture 10 Motion in Space: Velocity and Acceleration
Lecture 11 Exam 1 Review

Topics of the Day

- What's on My Cheat Sheet?
- How to Do Multiple Choice Questions
- How to Write a Good Free Response
- Hot Topics, including:
- Parameterizing by arc length
- Projectile problems

Dot Product, Cross Product, Triple Product

$$
\begin{array}{lll}
\mathbf{a} \cdot \mathbf{b} & a_{1} b_{1}+a_{2} b_{2}+a_{3} c_{3} & |\mathbf{a}||\mathbf{b}| \cos \theta
\end{array} \text { Zero if } \mathbf{a}, \mathbf{b} \text { orthogonal } ~\left(\left.\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}|\quad| \mathbf{a} \times \mathbf{b}|=|\mathbf{a}|| \mathbf{b} \right\rvert\, \sin \theta \quad \text { Zero if } \mathbf{a}, \mathbf{b} \text { parallel } \quad \begin{array}{ll}
\mathbf{a} \times \mathbf{b} & \\
\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c}) & \left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|
\end{array}\right.
$$

$|\mathbf{a} \times \mathbf{b}|$ is area of a parallelogram spanned by \mathbf{a}, \mathbf{b}
$|\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})|$ is volume of parallelipiped spanned by $\mathbf{a}, \mathbf{b}, \mathbf{c}$
Component of \mathbf{b} in a direction: $\frac{\mathbf{b} \cdot \mathbf{a}}{|\mathbf{a}|}$
Vector projection of \mathbf{b} in a direction: $\frac{\mathbf{b} \cdot \mathbf{a}}{|\mathbf{a}|^{2}} \mathbf{a}$

Lines

If $\left(x_{0}, y_{0}, z_{0}\right)$ is a point on the line and $\mathbf{v}=\langle a, b, c\rangle$ points along the line:

Parametric equations: $x=x_{0}+a t, y=y_{0}+b t, z=z_{0}+c t$
Symmetric equations: $\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}$
Two lines $\mathbf{r}_{1}(s)=\left(x_{1}, y_{1}, z_{1}\right)+s \mathbf{v}_{1}$ and $\mathbf{r}_{2}(t)=\left(x_{2}, y_{2}, z_{2}\right)+t \mathbf{v}_{2}$ are:

- parallel if \mathbf{v}_{1} is parallel to \mathbf{v}_{2}
- intersecting if $\mathbf{r}_{1}(s)=\mathbf{r}_{2}(t)$ for some values of s and t
- skew if none of the above

Planes

If $\left(x_{0}, y_{0}, z_{0}\right)$ is a point on the plane and $\mathbf{n}=\langle a, b, c\rangle$ is a vector normal to the plane:

$$
a x+b y+c z=d
$$

where d is determined by substituting $(x, y, z)=\left(x_{0}, y_{0}, z_{0}\right)$ into the left-hand side

Two planes with normals \mathbf{n}_{1} and \mathbf{n}_{2} are:

- parallel if \mathbf{n}_{1} and \mathbf{n}_{2} are parallel
- intersecting if their normal vectors are not parallel. The vector $\mathbf{n}_{1} \times \mathbf{n}_{2}$ points along the line of intersection

Cylinders A cylinder consists of a curve translated along a line parallel to one of the $x-, y$, or z axes (the "missing variable"). Examples: $y^{2}+z^{2}=1$, $z=\sin (x)$

Quadric Surfaces

$$
\begin{array}{ll}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1 & \text { Ellipsoid } \\
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1 & \text { Hyperboloid (One Sheet) } \\
-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1 & \text { Hyperboloid (Two Sheets) } \\
\frac{z^{2}}{c^{2}}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} & \text { Cone } \\
\frac{z}{c}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} & \text { Elliptic paraboloid } \\
\frac{z}{c}=\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}} & \text { Hyperbolic paraboloid }
\end{array}
$$

You can determine the graph of a quadric surface by finding its traces in planes $x=k, y=k, z=k$

Vector Functions

The function $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle, a \leq t \leq b$ traces out a space curve C
The tangent line to $\mathbf{r}(t)$ at $t=t_{0}$ is the line containing the point $\mathbf{r}\left(t_{0}\right)$ in the direction of $\mathbf{r}^{\prime}\left(t_{0}\right)$

The velocity of a space curve is $\mathbf{r}^{\prime}(t)$, and the speed is $\left|\mathbf{r}^{\prime}(t)\right|$
The arc length along C from $t=a$ to $t=b$ is $\int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| d t$
The arc length function for C is $s(t)=\int_{a}^{t}\left|\mathbf{r}^{\prime}(u)\right| d u$

Projectile Problems

For a projectile that starts at position \mathbf{r}_{0}, velocity $\mathbf{v}_{0}=v_{x} \mathbf{i}+v_{z} \mathbf{k}$, we can find the motion by integrating

$$
\mathbf{a}(t)=-g \mathbf{k}
$$

to get

$$
\mathbf{v}(t)=v_{x} \mathbf{i}+\left(v_{z}-g t\right) \mathbf{k}
$$

and

$$
\mathbf{r}(t)=\mathbf{r}_{0}+\left(v_{x} t\right) \mathbf{i}+\left(v_{z} t-\frac{1}{2} g t^{2}\right) \mathbf{k}
$$

Here g is the acceleration due to gravity:

$$
\begin{aligned}
& g=32 \mathrm{ft} / \mathrm{sec}^{2} \\
& g=9.8 \mathrm{~m} / \mathrm{sec}^{2}
\end{aligned}
$$

FPS units
MKS units

Multiple Choice Strategy

- Don't try to guess - compute the right answer!
- Make a record of your work so that you can go back and re-check your calculations
- Remember that just because your answer appears as a choice doesn't mean it's the right one!
- Remember to recheck your work and your answer!

I'll illustrate with some questions from the multiple choice practice exam.

Parameterizing by Arc Length

The arc length function for a curve C is

$$
s(t)=\int_{a}^{t}\left|\mathbf{r}^{\prime}(u)\right| d u
$$

You can parameterize a curve by arc length if you solve for t in terms of s and substitute for t in the formula for the curve.

Example: Parameterize the helix curve

$$
\mathbf{r}(t)=\langle\cos (2 t), \sin (2 t), t\rangle, \quad 0 \leq t \leq 4 \pi
$$

by arc length.

Projectile Problems

A batter hits a baseball 3 ft above the ground toward the center field fence, which is 10 ft high and 400 ft from home plate. The ball leaves the bat with speed $115 \mathrm{ft} / \mathrm{sec}$ at an angle of 50° above the horizontal. It is a home run? (that is, does the ball clear the fence?)

Open Mike

Good Luck on Exam I!

