Math 213 - Functions of Two Variables

Peter A. Perry
University of Kentucky

February 8, 2019

Homework

- Your exam scores should be in Canvas
- You will get your exam papers back in Tuesday's recitation
- If you have any grading concerns, please turn your papers back to your TA at the end of Tuesday's recitation. We can't accept regrading requests after this point.
- Be sure and keep up with the posted revised schedule for reading and homework
- Re-read section 14.1 and work on practice problems from Stewart: section 14.1, 9-19 (odd), 32, 36, 45, 49, 53

Unit II: Differential Calculus of Several Variables

Lecture 12 Functions of Several Variables
Lecture 13 Partial Derivatives
Lecture 14 Tangent Planes and Linear Approximation
Lecture 15 The Chain Rule, Implicit Differentiation
Lecture 16 Directional Derivatives and the Gradient
Lecture 17 Maximum and Minimum Values, I (local)
Lecture 18 Maximum and Minimum Values, II (absolute)
Lecture 19 Lagrange Multipliers
Lecture 20 Double Integrals
Lecture 21 Double Integrals over General Regions
Lecture 22 Double Integrals in Polar Coordinates
Lecture 23 Exam II Review

Goals of the Day

- Know how to find the domain of a function of several variables
- Know how to graph a function of two variables in three-dimensional space
- Know how to find the level curves of a function of two variables and to match the graph of a function with its contour plot
- Know how to find level surfaces of a function of three variables

One Variable versus Two Variables

A function of one variable is a map $f: I \rightarrow \mathbb{R}$ where the domain, I, is a subset of the real line

Example: $f(x)=\sqrt{1+x}, I=(-1, \infty)$
The graph of f is the set of points $(x, f(x))$ in the $x y$ plane, where $x \in I$

A function of two variables is a map $f: U \rightarrow \mathbb{R}$ where the domain U is a subset of \mathbb{R}^{2}.

Example: $f(x, y)=\sqrt{x-1}+\sqrt{y-2}$,

$$
U=\{(x, y): x \geq 1, y \geq 2\}
$$

The graph of f is the set of points $(x, y, f(x, z))$ in the $x y z$ plane

Match the following functions with the graphs of their domains in the $x y$-plane.

$$
\begin{array}{ll}
f(x, y)=\sqrt{9-x^{2}-y^{2}} & f(x, y)=\frac{x-y}{x+y} \\
f(x, y)=\frac{\ln (2-x)}{4-x^{2}-y^{2}} & f(x, y)=\sqrt{x}+\sqrt{y}
\end{array}
$$

Linear Functions

A function of the form $f(x, y)=a x+b x+c$ for numbers a, b, and c is a linear function. Its graph is a plane:

$$
z=a x+b y+c \Rightarrow a x+b y-z=c
$$

You already know how to graph this!

Linear Functions

A function of the form $f(x, y)=a x+b x+c$ for numbers a, b, and c is a linear function. Its graph is a plane:

$$
z=a x+b y+c \Rightarrow a x+b y-z=c
$$

You already know how to graph this!

Find the graph of $f(x, y)=2-x-y$

Linear Functions

A function of the form $f(x, y)=a x+b x+c$ for numbers a, b, and c is a linear function. Its graph is a plane:

$$
z=a x+b y+c \Rightarrow a x+b y-z=c
$$

You already know how to graph this!

Find the graph of $f(x, y)=2-x-y$

$$
x+y+z=2
$$

$(2,0,0),(0,2,0)$, and $(0,0,2)$ all lie on this plane

Linear Functions

A function of the form $f(x, y)=a x+b x+c$ for numbers a, b, and c is a linear function. Its graph is a plane:

$$
z=a x+b y+c \Rightarrow a x+b y-z=c
$$

You already know how to graph this!

Find the graph of $f(x, y)=2-x-y$

$$
x+y+z=2
$$

$(2,0,0),(0,2,0)$, and $(0,0,2)$ all lie on this plane

The normal vector is $\langle 1,1,1\rangle$

Quadratic Functions

Everything you know about cylinders and quadric surfaces $z=f(x, y)$ tells you something about graphs. Can you match these functions to their graphs?

$$
\begin{array}{ll}
f(x, y)=y^{2} & f(x, y)=x^{2}-y^{2} \\
f(x, y)=\sqrt{4-x^{2}-y^{2}} & f(x, y)=x^{2}+y^{2}
\end{array}
$$

Common Sense and Connection

Can you match these functions with their graphs?

$$
\begin{array}{ll}
f(x, y)=\sin (x) \cos (y) & f(x, y)=\exp \left(-x^{2}-y^{2}\right) \\
f(x, y)=\left(x^{2}+y^{2}\right) e^{-\left(x^{2}+y^{2}\right)} & f(x, y)=\left(x^{2}+3 y^{2}\right) e^{-\left(x^{2}+y^{2}\right)}
\end{array}
$$

Level Curves

Definition The level curves of a function f of two variables are the curves with equations $f(x, y)=k$, where k is a constant in the range of f.

Level Curves

Definition The level curves of a function f of two variables are the curves with equations $f(x, y)=k$, where k is a constant in the range of f.

Level Curves

Definition The level curves of a function f of two variables are the curves with equations $f(x, y)=k$, where k is a constant in the range of f.

- What is the range of the function $f(x, y)=x^{2}+y^{2}$?
- Describe the level curves of this function

Contour Plots

A contour plot of a function shows a number of level curves. Can you match these functions with their graphs and contour plots?

$$
f(x, y)=\sin (x y) \quad f(x, y)=\left(1-x^{2}\right)\left(1-y^{2}\right) \quad f(x, y)=\sin (x-y)
$$

You Already Know About Contour Plots

Let's examine a topo map from the Great Smoky Mountains National Park courtesy of the United States Geological Survey (USGS)

Functions of Three Variables

A function of three variables is a map $f: V \rightarrow \mathbb{R}$ where the domain V is a subset of \mathbb{R}^{3}

Find the domain and range of these functions of three variables

1. $f(x, y, z)=x^{2}+y^{2}+z^{2}$
2. $f(x, y, z)=\sqrt{9-x^{2}-y^{2}-z^{2}}$
3. $f(x, y, z)=x+y+z$

Definition The level surfaces of a function f of three variables are the surfaces with equation $f(x, y, z)=k$ where k is a constant in the range of f.

Determine the level surfaces of the the following functions:

1. $f(x, y, z)=x^{2}+y^{2}+z^{2}$
2. $f(x, y, z)=\sqrt{9-x^{2}-y^{2}-z^{2}}$
3. $f(x, y, z)=x+y+z$
