Math 213 - Partial Derivatives

Peter A. Perry
University of Kentucky
February 11, 2019

Homework

- Remember that our schedule has changed
- Re-read section 14.3
- Start working on practice problems in section 14.3, 15-31 (odd), 43, 47, 49, 51, 52, 53, 55, 63-69 (odd), 75, 77
- Be ready to work in recitation tomorrow on section 14.3
- Read section 14.4 for Wednesday's lecture
- Remember that Webworks B1 and B2 are due Wednesday

Unit II: Differential Calculus of Several Variables

Lecture 12 Functions of Several Variables
Lecture 13 Partial Derivatives
Lecture 14 Tangent Planes and Linear Approximation
Lecture 15 The Chain Rule
Lecture 16 Directional Derivatives and the Gradient
Lecture 17 Maximum and Minimum Values, I
Lecture 18 Maximum and Minimum Values, II
Lecture 19 Lagrange Multipliers
Lecture 20 Double Integrals
Lecture 21 Double Integrals over General Regions
Lecture 22 Double Integrals in Polar Coordinates
Lecture 23 Exam II Review

Goals of the Day

- Learn how to compute partial derivatives and know various different notations for them
- Understand the geometric interpretation of partial derivatives
- Know how to compute higher partial derivatives
- Understand their connection with partial differential equations

Derivatives - One Variable

Derivatives - One Variable

The derivative of f at a is the limit

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

if it exists.

Derivatives - One Variable

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

if it exists.
$f^{\prime}(a)$ is the slope of the tangent line to the graph of f at the point ($a, f(a)$).

Derivatives - One Variable

The derivative of f at a is the limit

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

if it exists.
$f^{\prime}(a)$ is the slope of the tangent line to the graph of f at the point ($a, f(a)$).
$f^{\prime}(a)$ is also the instantaneous rate of change of $y=f(x)$ at $x=a$

Partial Derivatives - Two Variables

A function of two variables has two very natural rates of change:

- The rate of change of $z=f(x, y)$ with respect to x when y is fixed
- The rate of change of $z=f(x, y)$ when respect to y when x is fixed

The first of these is called the partial derivative of f with respect to x, denoted $\partial f / \partial x$ or f_{x}

$$
f_{x}(a, b)=\lim _{h \rightarrow 0} \frac{f(a+h, b)-f(a, b)}{h}
$$

the second is called the partial derivative of f with respect to y, denoted $\partial f / \partial y$ or f_{y}

$$
f_{y}(a, b)=\lim _{h \rightarrow 0} \frac{f(a, b+h)-f(a, b)}{h}
$$

Geometric Interpretation

Given a function $f(x, y) \ldots$

Geometric Interpretation

Given a function $f(x, y) \ldots$

Compute $f_{x}(a, b)$ by setting $y=b$ and varying x :
$f_{x}(a, b)=\lim _{h \rightarrow 0} \frac{f(a+h, b)-f(a, b)}{h}$

Geometric Interpretation

Given a function $f(x, y) \ldots$

Compute $f_{x}(a, b)$ by setting $y=b$ and varying x :
$f_{x}(a, b)=\lim _{h \rightarrow 0} \frac{f(a+h, b)-f(a, b)}{h}$

Compute $f_{y}(a, b)$ by setting $x=a$ and varying y :
$f_{x}(a, b)=\lim _{h \rightarrow 0} \frac{f(a, b+h)-f(a, b)}{h}$

Partial Derivatives

Rules for Finding Partial Derivatives of $z=f(x, y)$

1. To find f_{x}, regard y as a constant and differentiate $f(x, y)$ with respect to x
2. To find f_{y}, regard x as a constant and differentiate $f(x, y)$ with respect to y

Find both partial derivatives of the following functions:

1. $f(x, y)=x^{4}+5 x y^{3}$
2. $f(x, t)=t^{2} e^{-x}$
3. $g(u, v)=\left(u^{2}+v^{2}\right)^{3}$
4. $f(x, y)=\sin (x y)$
5. $f($ George, Fran $)=(\text { George })^{5}+(\text { Fran })^{3}$

Tangent Planes - Sneak Preview

In calculus of one variable, the derivative $f^{\prime}(a)$ defines a tangent line to the graph of f at $(a, f(a))$ by the equation

$$
L(x)=f(a)+f^{\prime}(a)(x-a)
$$

In calculus of two variables, the partial derivatives $f_{x}(a, b)$ and $f_{y}(a, b)$ define a tangent plane to the graph of f at $(a, b, f(a, b))$ by

$$
\begin{aligned}
& L(x, y)=f(a, b) \\
& \quad+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
\end{aligned}
$$

More Partial Derivatives

Sometimes it's useful to remember that, to compute a partial derivative like $f_{x}(x, 1)$, you can set $y=1$ before you start computing.

Find the following partial derivatives.

1. $f_{x}(x, 1)$ if $f(x, y)=x^{y^{y^{y y}}} \sin (x)$
2. $f_{y}(3, y)$ if $f(x, y)=(x-3) \sin (\cos (\log (y))+x y$

Higher Partials

We can compute higher-order partial derivatives just by repeating operations. We'll find out what these partials actually mean later on!

Example Find the second partial derivatives of $f(x, y)=x^{2} y^{2}$

$$
\begin{array}{cc}
\frac{\partial f}{\partial x}=f_{x}(x, y)=2 x y^{2}, \quad \frac{\partial f}{\partial y}=2 x^{2} y \\
\frac{\partial^{2} f}{\partial x^{2}}= & \frac{\partial^{2} f}{\partial x \partial y} \\
\frac{\partial^{2} f}{\partial y \partial x}= & \frac{\partial^{2} f}{\partial y^{2}}
\end{array}=
$$

Notations:

$$
\frac{\partial^{2} f}{\partial y \partial x}=f_{x y}=\left(f_{x}\right)_{y}, \quad \frac{\partial^{2} f}{\partial x \partial y}=f_{y x}=\left(f_{y}\right)_{x}
$$

Clairaut's Theorem

Suppose f is defined on a disk D that contains the point (a, b). If the functions $f_{x y}$ and $f_{y x}$ are both continuous on D, then

$$
f_{x y}(a, b)=f_{y x}(a, b)
$$

Check Clairaut's theorem for the function $f(x, y)=x^{3} y^{2}-\sin (x y)$

Implicit Differentiation

You can find partial derivatives by implicit differentiation.

1. Find $\partial z / \partial x$ and $\partial z / \partial y$ if $x^{2}+y^{2}+z^{2}=1$
2. Find $\partial z / \partial x$ and $\partial z / \partial y$ if $e^{z}=x y z$

Partial Differential Equations

Partial Differential Equations describe many physical phenomena. The unknown function is a function of two or more variables.

The wave equation for $u(x, t)$, a function which, for each t gives a 'snapshot' of a one-dimensional traveling wave:

$$
\frac{\partial^{2} u}{\partial t^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial x^{2}}
$$

The heat equation for $u(x, y, t)$, the temperature of a thin sheet at position (x, y) at time t :

$$
\frac{\partial u}{\partial t}(x, y, t)=K\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) u(x, y, t)
$$

Laplace's Equation for the electrostatic potential of a charge distribution ρ :

$$
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) u(x, y, z)=4 \pi \rho(x, y, z)
$$

The Wave Equation

$$
\frac{\partial^{2} u}{\partial t^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial x^{2}}
$$

$u(x, t)$ gives the height of a wave moving down a channel as a function of distance x and time t

For each fixed t, we get a "snapshot" of the wave

For each fixed x, we get the height of the wave, at that point, as a function of time

The Heat Equation

$$
\frac{\partial u}{\partial t}(x, t)=k \frac{\partial^{2}}{\partial x^{2}} u(x, t)
$$

For each t we get a "snapshot" of the distribution of heat-at first heat concentrates near $x=0$, but then diffuses and cools as time moves forward

